List of MAK and BAT Values 2020
Permanent Senate Commission
for the Investigation of Health Hazards
of Chemical Compounds in the Work Area

Report 56
List of MAK and BAT Values 2020

Permanent Senate Commission for the Investigation of Health Hazards of Chemical Compounds in the Work Area

Report 56
Further publications from the Permanent Senate Commission for the Investigation of Health Hazards of Chemical Compounds in the Work Area:

The MAK-Collection for Occupational Health and Safety Documentations and Methods

These publications are available from the open access publishing platform for life sciences: https://mak-dfg.publisso.de
List of MAK and BAT Values 2020

Maximum Concentrations and Biological Tolerance Values at the Workplace

Permanent Senate Commission for the Investigation of Health Hazards of Chemical Compounds in the Work Area

Report 56
Report 56 of the Permanent Senate Commission for the Investigation of Health Hazards of Chemical Compounds in the Work Area, of 1 July 2020. This report replaces report 55 of 1 July 2019 and supersedes all previous reports of the Commission.

DEUTSCHE FORSCHUNGSGEMEINSCHAFT
authorized and signed by Professor Dr. Andrea Hartwig
Chair of the Permanent Senate Commission for the Investigation of Health Hazards of Chemical Compounds in the Work Area

Deutsche Forschungsgemeinschaft
Kennedyallee 40 · 53175 Bonn, Germany
Mailing Address: 53170 Bonn
Telephone: +49 228 885-1
Telefax: +49 228 885-2777
arbeitsstoffkommission@dfg.de
www.dfg.de

This book was carefully produced. Nevertheless, authors, editors and publisher do not warrant the information contained therein to be free of errors. Readers are advised to keep in mind that statements, data, illustration, procedural details or other items may inadvertently be inaccurate.

Bibliographic information of the German National Library
The German National Library catalogs this publication in the German National Bibliography; detailed bibliographic information can be found on the Internet website: http://dnb.ddb.de.

2020 German Medical Science, Düsseldorf, Germany
DOI: 10.34865/mbwl_2020_eng

This work is licensed under a Creative Commons Attribution 4.0 International License. (https://creativecommons.org/licenses/by/4.0/).

Cover Design: Tim Wübben
Composition: 3w+p GmbH, Ketteler Straße 5–11, D-97222 Rimpar
Table of Contents

Maximum Concentrations at the Workplace

I Significance, use and derivation of MAK values ........................................ 9
  Definition ........................................................................................................... 9
  Purpose ............................................................................................................. 10
  Prerequisites .................................................................................................... 10
  Derivation of MAK values ................................................................................ 10
    a. Selection of substances and collection of data ........................................... 11
    b. Values based on effects in man ................................................................. 12
    c. Values based on effects on animals ......................................................... 13
    d. Exceptional workplaces ........................................................................... 14
    e. Odour, irritation and annoyance ............................................................... 15
    f. Habituation ............................................................................................... 15
  Documentation .................................................................................................. 16
  Publication ......................................................................................................... 16
  Mixtures of substances .................................................................................... 16
  Analytical controls .......................................................................................... 17
  Substances that can occur simultaneously as vapour and aerosol .............. 18

II List of substances ............................................................................................ 19
  Substances with MAK values and substances listed in Sections II b and III to
    XV ................................................................................................................... 20
  Substances for which no MAK value can be established at present ............... 136

III Carcinogenic substances .................................................................................. 142
  Category 1 ....................................................................................................... 142
  Category 2 ....................................................................................................... 143
  Category 3 ....................................................................................................... 147
  Category 4 ....................................................................................................... 151
  Category 5 ....................................................................................................... 152
  Groups of substances requiring special consideration .................................... 153
    Carcinogenic medicines ............................................................................... 153
    Amines which form carcinogenic nitrosamines on nitrosation .................... 153
    Monocyclic aromatic amino and nitro compounds ...................................... 154
    Azo colourants ............................................................................................. 155
    Pyrolysis products of organic materials .................................................... 155
    Fibrous dusts ............................................................................................... 157
      Classification criteria .................................................................................. 157
      Summary ..................................................................................................... 159

IV Sensitizing substances ...................................................................................... 161
  Criteria for assessment of contact allergens .................................................... 163
  Criteria for assessment of respiratory allergens ............................................. 165
  Designation of a substance as an allergen ....................................................... 167
Table of Contents

List of allergens .............................................. 168
Evaluation of members of specific groups of substances ............ 174

V Aerosols ....................................................... 177
  General definitions ...................................... 177
  Properties of aerosols which determine their effects ............ 178
  Inhalation, deposition and clearance of aerosols in the respiratory tract ... 178
  Conventions for measuring concentrations of particles .......... 182
  Fibrogenic aerosols .................................... 183
  General threshold limit value for dust ........................ 183
  Exposures exceeding the MAK value .......................... 183
  Ultrafine (aerosol) particles, their agglomerates and aggregates ... 184

VI Limitation of exposure peaks ................................ 185

VII Percutaneous absorption .................................. 186

VIII MAK values and pregnancy .................................. 187

IX Germ cell mutagens ........................................ 189

X Substances requiring special consideration ........................ 190
  Organic peroxides ...................................... 190
  Gasolines .............................................. 191
  Metal-working fluids, hydraulic fluids and lubricants ........... 191
  Metals and metal compounds ................................ 198
  Radioactive materials ................................... 199

Assessment Values in Biological Material

XI Significance and use of BAT values ................................ 200
  Definition .............................................. 200
  Prerequisites .......................................... 200
  Derivation of BAT values .................................. 200
  Documentation ......................................... 201
  Purpose .................................................. 201
  Correlations between BAT and MAK values ......................... 202
  BAT values and pregnancy .................................. 202
  Surveillance ............................................ 203
  Evaluation of analytical data ................................ 204
  Allergenic substances .................................... 204
  Carcinogenic substances .................................. 204
  Biological reference values ................................ 204
  Mixtures of substances ................................... 204

XII List of substances .......................................... 206
★ Indicates a change from the 2019 List of MAK and BAT Values

Details of the new threshold values or classifications proposed are given in the list of MAK values and assessment values in biological material reviewed in 2019/2020 (appendix page I). The Commission has adopted these proposals but puts them up for discussion until 31.12.2020. New data or scientific commentary may be submitted to the Commission’s scientific office (Kommissionssekretariat) until this date. This information will be examined and taken into consideration in the final ratification.
Maximum Concentrations at the Workplace

I Significance, use and derivation of MAK values

Definition

The MAK value ("maximale Arbeitsplatz-Konzentration": maximum workplace concentration) is defined as the maximum concentration of a chemical substance (as gas, vapour or particulate matter) in the workplace air which generally does not have known adverse effects on the health of the employee nor cause unreasonable annoyance (e.g. by a nauseous odour) even when the person is repeatedly exposed during long periods, usually for 8 hours daily but assuming on average a 40-hour working week. Certain aspects of occupational hygiene associated with liquid substances, e.g. formation of mist with obscured visibility, dampening of clothing, or condensation on the floor, can not be taken into account in establishing the MAK value. Such effects have a wide range of variation, depending on the industrial process, the procedure, and the physical conditions at the workplace. A suitable instrument for evaluation is not yet available. Regardless of the level of the toxicologically based MAK value, it should be ensured in these cases that safety at the workplace is not placed at risk. This situation is not explicitly mentioned in the documentations because it is not known whether the substance exists as an aerosol at the MAK value. As a rule, the MAK value is given as an average concentration for a period of up to one working day or shift. MAK values are established on the basis of the effects of chemical substances; when possible, practical aspects of the industrial processes and the resulting exposure patterns are also taken into account. Scientific criteria for the prevention of adverse effects on health are decisive, not technical and economic feasibility.

For the establishment of a MAK value,

- **the carcinogenicity** (see Section III)
- **the sensitizing effects** (see Section IV)
- **the contribution to systemic toxicity after percutaneous absorption** (see Section VII)
- **the risks during pregnancy** (see Section VIII)
- **the germ cell mutagenicity** (see Section IX)

of a substance are evaluated and the substance classified or designated accordingly. Descriptions of the procedures used by the Commission in the evaluation of these end points may be found in the appropriate sections of the List of MAK and BAT Values, in the “Toxikologisch-arbeitsmedizinischen Begründungen von MAK-Werten” (available in English translation) and in scientific journals.  

1) obtainable online under https://mak-dfg.publisso.de  

---

List of MAK and BAT Values 2020. DFG, Deutsche Forschungsgemeinschaft  
DOI: 10.34865/mbwl_2020_eng  
German Medical Science | PUBLISSO 2020
In line with the so-called “preferred value approach” also used e.g. in the European Union, MAK values are to be established preferentially as the numerical values 1, 2 or 5 ml/m³ or, for non-volatile substances, 1, 2 or 5 mg/m³, multiplied by powers of ten.

In the use of MAK values, the analytical procedures used for sampling and analysis and the sampling strategy are of great importance.

**Purpose**

MAK values promote the protection of health at the workplace. They provide a basis for judgement of the toxic potential or safety of the concentrations of substances in the workplace air. However, they do not provide constants from which the presence or absence of a health hazard after longer or shorter periods of exposure can be determined; nor can proven or suspected damage to health be deduced, in an isolated case, from MAK values or from the classification of a substance as carcinogenic. Such deductions can be made only on the basis of medical findings, taking into consideration all the circumstances of the particular case. Therefore, on principle, statements in the List of MAK and BAT Values are not to be seen as a priori judgements for individual cases. On principle, observation of MAK values does not eliminate the necessity for regular medical examination of the exposed individuals.

MAK values are not suitable for providing constant conversion factors for deduction of health risks associated with long-term exposure to contaminants in the non-occupational atmosphere, e.g., in the vicinity of industrial plants.

**Prerequisites**

In principle, the substances are dealt with according to their importance for practical occupational hygiene and the expertise of the members of the Commission. The prerequisite for the establishment of a MAK value is the availability of sufficient data for the substance from the fields of toxicology, occupational medicine or industrial hygiene. Adequate documentation is not always available. The List is revised annually and suggestions for substances to be added and new information on listed substances are welcome.\(^7\)

**Derivation of MAK values**

MAK values are derived by the “Permanent Commission of the DFG for the Investigation of Health Hazards of Chemical Compounds in the Work Area” exclusively on the basis of scientific arguments and are published in the List of MAK and BAT Values which is issued annually. For the derivation of MAK values, certain rules of procedure have been


\(^7\) Please contact the Geschäftsstelle der Deutschen Forschungsgemeinschaft, D-53170 Bonn; or the Sekretariat der Kommission: Karlsruher Institut für Technologie (KIT) – Institut für angewandte Biowissenschaften, Abteilung Lebensmittelchemie und Toxikologie, 76131 Karlsruhe.
developed by the Commission on the basis of established toxicological and occupational medical concepts; answers to at least the more common questions are repeatedly sought in the same way. Therefore, the usual procedures and the general principles for the derivation of MAK values are described below. Essentially, these principles correspond with those published by the European “Scientific Committee on Occupational Exposure Limits, SCOEL”.

First, the most sensitive parameters described in the available data are to be identified, i.e., those effects which appear first during exposure to increasing concentrations of the substance. To be taken into account in this process are both local effects, that is, the results of effects on surfaces of the organism which are in contact with the environment (e.g. mucous membranes of the respiratory tract and the eyes, skin) and also systemic effects and effects on the lungs, that is, the results of uptake of the substance into the organism. Generally, the concentration-effect relationships for these two kinds of effects are different. The derivation of the MAK value is based on the “no observed adverse effect level” for the most sensitive effect with relevance for health. A NOAEL is not equivalent with a threshold which cannot be scientifically defined. The NOAEL is a concentration determined by experimental conditions at which the given effect is so low that it does not differ from the control value. It must be decided whether or not such effects may be considered to be adverse effects. At present there is no generally accepted definition for an “adverse” effect, at least in part because of the lack of clarity about the still changing definition for the state of being “healthy”; therefore this decision must be made anew in every case.

Fundamentally, known effects of a substance in man are given highest priority in the derivation of the MAK value.

In the evaluation of a substance, known effects of structural analogues may also be taken into account.

If no NOAEL may be derived from the available data, a scientifically founded MAK value cannot be established and the substance is listed in Section II b of the List of MAK and BAT Values.

a. Selection of substances and collection of data

For the substances being studied, the epidemiological data published in scientific journals, occupational medical reports, toxicological properties and any other potentially useful information is first assembled by carrying out researches in appropriate databanks. The references found in the literature search are checked for their relevance for the assessment of the substance in question and the original publications of the selected literature are examined. When necessary, unpublished internal company data in the form of complete study reports are also included. These are then identified as such in the reference list at the end of the documentation. The validity of the available information and studies is checked. Whether or not a study is relevant for the current assessment is decided on a case to case basis.

---


basis. Whenever possible, evaluation of the studies is based on the guidelines of the OECD or similar bodies.

The unabridged reports are made available to the Commission and are filed at the Commission’s scientific central office. Information required by a third party about the company reports cited in the Commission’s documentation is supplied in writing by the chairman of the Commission at his discretion. Access to company reports is not made available to third parties. Copies, even of parts of reports, are not provided.

b. Values based on effects in man

For many substances encountered at the workplace, irritation or central nervous depression is the critical effect. Valuable information – at least for these acute effects of single exposures – may be obtained from studies of volunteers exposed under controlled conditions which yield data for concentration-effect relationships and also for concentrations without effects (NOAEC). A detailed review of the methods required of such studies and of the usefulness of various parameters for the establishment of threshold concentrations has been published.\(^{11}\) Such studies often demonstrate differences in sensitivity between persons who have never been exposed to the test substance and those who have been repeatedly exposed, e.g., at work.

Occupational medical and epidemiological studies provide further information from which the health risks associated with handling particular substances may be evaluated. However, not only the parameters determined in the exposed persons, but also any differences in study design, in the analytical methods and sampling strategies must be considered in evaluating such studies. Various confounders, exposure to mixtures, previous disorders or inadequate exposure records can alter or falsify any detected concentration-effect relationships.

Cross-sectional studies with only single determinations of exposure levels and only single examinations of the exposed persons do not generally permit the association of any observed symptoms with the current exposure situation. This requires information as to past exposure levels.

Therefore, longitudinal studies with repeated determination of the workplace and systemic exposure levels and repeated examination of the exposed persons play a decisive role in the establishment of thresholds. Valid epidemiological studies of persons exposed for long periods to concentrations which do not produce adverse effects provide a reliable basis for the establishment of threshold levels for the workplace, especially when the study design permits statements as to both local and systemic effects.

The diverse sensitivities of individual employees (as determined by age, constitution, nutrition, climate, etc.) are taken into consideration in the establishment of MAK values. It is currently not possible to take sex-specific differences in toxicokinetics and toxicodynamics into account when establishing MAK and BAT values because of the lack of appropriate scientific data.

When the NOAEL has been determined from the effects of the substance in man observed at the workplace the MAK value is generally established at the level of this NOAEL.

---

When deriving MAK values for systemic effects and effects on the lungs from studies with volunteers at rest, the results are extrapolated to the increased respiratory minute volume at the workplace. The MAK value is established at half of the concentration used in the volunteer study, which is calculated from the ratio of the respiratory volume of workers to that of persons at rest. Gases and vapours with a blood:air partition coefficient of < 5 represent an exception (see the documentation “Increased respiratory volume at the workplace – Significance for the derivation of the MAK value”). In addition, the results are extrapolated to the longer daily exposure at the workplace, unless there are toxicokinetic data available that show this to be unnecessary.

c. Values based on effects on animals

Because the effects in man are not known for many substances, MAK values are often derived from results obtained with experimental animals. This is carried out in the clear understanding of the problems associated with extrapolation between species and of the much smaller group sizes than is usual in epidemiological studies. On the other hand, animal studies carried out according to modern principles also offer advantages including precise characterization of exposure levels, the wide range of parameters that can be studied, and the possibility of determining dose-response relationships and NOAELs. The minimum database for the derivation of a MAK value is generally considered to be a NOAEL from a valid 90-day inhalation study with experimental animals. Of the results of studies in which substances were administered to experimental animals by the oral or dermal route, mostly only the systemic effects may be considered to be relevant for persons exposed at the workplace. Therefore, in the documentation of a MAK value such results must be accompanied by information about the local effects of the substance, especially the effects on the respiratory tract.

To extrapolate an oral dose from an animal study to a concentration in the air at the workplace, the Commission uses a procedure which in essence corresponds with that described in the document for determination of “Derived No-Effect Levels” (Guidance on Information Requirements and Chemical Safety Assessment, Chapter R.8, ECHA 2008). The only difference is that the Commission assumes 100% absorption after inhalation and oral administration when there are no substance-specific data. Exceptions to this are the metals and metal compounds, for which 50% absorption is assumed after oral administration if substance-specific data are not available.

Procedure: If substance-specific data are not available, the oral dose is divided by the following correction factor (ECHA 2008), depending on the species:

- mouse: 7; rat: 4; rabbit: 2.4; monkey: 2; dog: 1.4.

The further assumptions (human body weight: 70 kg, breathing volume: 10 m³ per 8 hours) still apply. The conversion is calculated with the following formula:

\[
\text{Inhaled concentration} = \frac{\text{oral dose (mg/kg body weight and day)} \times \text{oral absorption in the animal (\%) \times 70 kg body weight \ species-specific correction factor \times inhalation absorption in humans (\%) \times (10 m^3 \text{ per day})}}{12}
\]

---

12) see “Increased respiratory volume at the workplace – Significance for the derivation of the MAK value” (2017), https://doi.org/10.1002/3527600418.mbrespivole6217
For example, a dose of 1 mg/kg body weight in the rat, a substance-specific oral absorption of 80% and unknown inhalation absorption result in the following concentration:

\[
\frac{1 \text{ mg/kg} \times 80\% \times 70 \text{ kg}}{4 \times 100\% \times 10 \text{ m}^3} = 1.4 \text{ mg/m}^3
\]

Assuming that the same external concentration in the air leads to the same internal exposure in all species at rest, it must be taken into account when extrapolating data from inhalation studies in animals to humans that in the case of systemic effects and effects in the lungs the body burden (related to kg body weight) of the worker at the workplace, with an assumed respiratory volume of 10 m$^3$ in 8 hours, is about twice as high as that of the experimental animal in the usual 6-hour experiment. The equivalent external concentration at the workplace is, therefore, half of that used in the experiment. This applies only for gases and vapours with a blood:air distribution coefficient of >5 and for aerosols, provided that the effect is the product of $c \times t$. If it can be shown that the critical effect depends more on the concentration than the product of $c \times t$ and that the steady state was reached within the duration of the experiment, the equivalent concentration at the workplace is two thirds of the concentration used in the experiment (1:1.5), as then extrapolation of the usual 6-hour exposure in animal experiments to the 8-hour exposure at the workplace is no longer necessary (see the documentation “Increased respiratory volume at the workplace – Significance for the derivation of the MAK value”\textsuperscript{13}). If there are valid PBPK models of exposure with the relevant metabolites in humans and animals these are used for extrapolation from the experimental animal to persons at the workplace. If necessary, the dose in the animal experiment is converted if the frequency of exposure differed from that at the workplace. With continuous exposure (for example, feeding studies) the NOAEL from the animal experiment is therefore multiplied by 7/5 to take into consideration the continuous exposure of the animals compared with the intermittent exposure of the usual 5-day working week. With administration of the substance with the diet or drinking water to rats and mice, as a rule the factors used by the EFSA\textsuperscript{14} are used to convert the values into a dose per kg body weight, if there are no measured values.

When the NOAEL is based on results with animals in oral or inhalation studies, the MAK value is generally established at the level of half of the concentration in air extrapolated for workers at the workplace. However, in some cases species differences in sensitivity to the substance must be taken into account and here the toxicokinetic data are particularly important.

d. Exceptional workplaces

The concentrations of inhaled gaseous substances in blood and tissues of persons working under hyperbaric pressure have been shown to correlate positively with the pressure. This dependence of the body burden on the workplace conditions must be taken into account in the application of MAK and BAT values.

\textsuperscript{13} see “Increased respiratory volume at the workplace – Significance for the derivation of the MAK value” (2017), https://doi.org/10.1002/3527600418.mbrespivole6217

e. Odour, irritation and annoyance

Exposure of persons to substances at the workplace can cause smells (nervi olfactorii) or sensory irritation (nervus trigeminus). Such effects must be differentiated according to their relevance for health. This differentiation can cause difficulties because the parameters of interest can still not be determined with sufficient objectivity. Smells are mostly detected at lower concentrations than is sensory irritation. In general, if the smell and irritation are unpleasant and powerful enough, both can cause annoyance. When assessing these effects on the well-being of exposed persons, the physiological process of habituation (adaptation) must also be taken into account. In particular, the sense of smell is affected markedly by adaptation processes so that during constant exposure even to high concentrations the smell of a substance may no longer be noticed after a while. Excessive annoyance of workers by sensory irritation or persistent intensive or nauseous smells is taken into account when establishing thresholds.

Sensory irritation is understood above all to be a more or less concentration-dependent, reversible local interaction with receptors of the peripheral nervous system. This reaction takes place without signs of inflammation or histopathological changes yet being evident. The sensory NOAEC can be determined in human studies (subjective/objective symptoms) or studies with animals (mouse, RD10). At higher concentrations, however, in addition neurogenic inflammation and adverse histopathological changes of the upper respiratory tract (for example, an inflammatory reaction of the tissue, atrophy/regeneration of the olfactory epithelium) can occur. Such effects can be observed in inhalation studies with rodents. A NOAEC can be derived for this, which can decrease with increasing exposure duration.

According to an empirical study,15) if there are no studies in humans for sensory irritation the long-term NOAEC for histopathological effects of the upper respiratory tract of rodents can be used to estimate a NAEC for sensory irritation (eyes, nose) in humans. If the target tissue is the olfactory epithelium in rodents, no sensory irritation is to be expected at half the value of the long-term NOAEC, with other target tissues of the upper respiratory tract at a third of the value of the corresponding NOAEC. If there is only a short or medium-term study available, its NOAEC is divided by 6 or 2, respectively, to extrapolate a long-term NAEC (Brüning et al. 2014), unless the data for the substance or a better-investigated analogous substance suggest that the increasing exposure duration does not lead to an increase in the effects or leads to an increase of different magnitude. If no NOAEC was obtained, with a suitable database the lower confidence interval of a benchmark dose (BMDL95 or BMDLSD) can be calculated or the NAEC can be estimated by dividing the LOAEC by 2 or 3 depending on the severity of the effects and the gradient of the concentration-effect relationship.

f. Habituation

Even at constant exposure concentrations, persons can become accustomed to sensory irritation, effects on the sense of well-being or smells so that these no longer function adequately as warning signals. At present, however, not enough is known about the mechanisms and dose-response relationships involved. With many substances, on the other hand, habituation is the result of toxic effects such as inactivation of enzymes or inhibition of

---

Documented molecules. Especially in such cases, and when the warning signals produced by sensory irritation are reduced or cancelled out by disorders of well-being or the sense of smell, it is necessary to take habituation into account when establishing thresholds.

**Documentation**

A detailed scientific documentation of each decision is published in the series Toxikologisch-arbeitsmedizinische Begründung von MAK-Werten, also available in English translation). Annual supplements are planned. These documents present, clearly and in detail, the scientific data and the reasons for the establishment of a MAK value. Because of this system, it is sufficient to establish only general principles for the derivation of MAK values. The assessment of individual substances on the basis of all the available toxicological and occupational medical data yields a more differentiated and specific evaluation than would the observance of stringently formulated rules.

The published data for the toxicity and effects of a substance in man and animals and all other relevant information are organized according to the kind of effect and presented in the form of a review. This review of the toxicological and epidemiological data for a substance serves initially as a basis for the discussion within the Commission for the derivation of a MAK value and for detailed evaluation of the physicochemical properties, percutaneous absorption, sensitizing effects, carcinogenic effects, prenatal toxicity and germ cell mutagenicity of the substance. When new data become available, the MAK value, classification and designation of the substance are reassessed and, when necessary, altered.

**Publication**

Prospective changes and new entries are announced one year in advance in the List of MAK and BAT Values, usually on 1st July. In addition, the new entries are published on the homepage of the Commission at the DFG (https://www.dfg.de/download/pdf/dfg_improfil/gremien/senat/arbeittsstoffe/ankuendigungsliste_20_21.pdf). If necessary, in addition to the regular updates each year in July, further announcements of prospective changes and new entries can be made there at any time. Following ratification of the annual List, the organizations listed below are officially informed of the planned changes: “Länderausschuss für Arbeitsschutz und Sicherheitstechnik (LASI)” (Federal Committee for Occupational Safety and Technical Security), the “Bundesverband der deutschen Industrie” (Federation of German Industries), the “Deutsche Gesetzliche Unfallversicherung” (German Statutory Accident Insurance) and the “Deutsche Gewerkschaftsbund” (the German Trade Union Federation). The purpose of this measure is to give these organizations enough time to send to the Commission any available scientific documentation relevant to the planned changes and additions to the List of MAK and BAT Values.

**Mixtures of substances**

In general, the MAK value is only valid for exposure to a single, pure substance. It cannot be applied unconditionally to one component of a mixture in the workplace air or to a technical product which might contain more toxic impurities. Simultaneous or successive

---

7600418 (up to 2019)
exposure to several substances may be much more or, in isolated cases, even less dan-
gerous than the exposure to one of the substances on its own. A MAK value for a mixture
of substances cannot be satisfactorily determined by simple calculation because the com-
ponents of the mixture generally have very different kinds of effect; MAK values can
presently be established for such mixtures only after specific toxicological examination or
studies of the particular mixture of substances. Given the inadequacy of the currently
available data, the Commission decidedly refrains from calculating MAK values for
mixtures, particularly for liquid solvent mixtures. However, it is willing, on the basis of its
own investigations, to provide values for defined vapour mixtures of practical relevance.

**Analytical controls**

The compliance with MAK and BAT values (that is, keeping the exposure levels below
these values) is intended to protect the health of persons exposed to hazardous substances
at work. This objective can be ensured only by regular analytical determination of the
concentration of the hazardous substances in the workplace air or of the concentration of
the substances, their metabolites or other parameters of intermediary metabolism in the
body fluids of exposed persons. For this purpose, it is necessary to use analytical methods
which have been tested regarding the analytical reliability and practicability.

The Commission’s analytical working groups for air analyses and for analyses in biolog-
ical material have developed such methods and published them in the series Luftanalysen
and Analysen in biologischem Material\(^\text{17}\)). These collections of methods are supplemented
regularly and are published in both German and English. The methods are conceived as so-
called standard operating procedures (SOP) which are intended to ensure comparability of
the analytical results from laboratory to laboratory and with the corresponding limit values.
Thus they contribute to the quality control of the results. In addition, they provide a good
basis for the health protection which is the objective of the limit values.

In the development of these analytical methods, the accuracy and reliability of the
results is the most important factor. The methods are updated regularly if new scientific
and instrumental findings indicate changes. In this respect the methods always reflect the
current state of technology and are well-suited for monitoring limit values.

The methods for analyses in biological material are, whenever possible, designed so
that their measurement range includes the background concentration range. In this way it is

\(^{17}\) “Analytische Methoden zur Prüfung gesundheitsschädlicher Arbeitsstoffe”, drawn up by the working groups
“Luftanalysen” (Analyses of Hazardous Substances in Air) and “Analysen in biologischem Material” (Ana-
lyses of Hazardous Substances in Biological Materials).

7600418 (up to 2019).

The Commission welcomes suggestions for inclusion of new chemical compounds as well as analytical
methods.

Analytical methods for carcinogenic workplace substances are published in cooperation with the analytical
chemistry group from the German statutory accident insurance, ‘Arbeitsgruppe Analytik im Sachgebiet
“Gefahrstoffe” des Fachbereichs “Rohstoffe und chemische Industrie” der Deutschen Gesetzlichen Unfall-
versicherung’ (“Von den Unfallversicherungs trägern anerkannte Analysenverfahren zur Feststellung der
Konzentrationen krebserzeugender, erbgutverändernder oder fortpflanzungsgefährdender Stoffe in der Luft in
Arbeitsbereichen” (DGUV Informationen 213–5xx), DGUV, D-81359 München:
https://www.bgrci.de/fachwissen-portal/dguv-informationen-213-5xx/
possible to differentiate between occupational and environmental exposure and to correctly evaluate the analytical results.

Substances that can occur simultaneously as vapour and aerosol

Substances in the air at the workplace usually occur either as a gas/vapour mixture or in the condensed phase in the form of droplets or particles (dust). There are, however, also substances that do not follow this pattern. These are substances with a low vapour pressure at room temperature, which can therefore occur in relevant amounts as both vapour and aerosol. They can be both liquids and sublimating solids.

When determining the inhalation exposure to substances it must always be considered whether vapour and aerosol mixtures can be formed as a result of the work process. This must be taken into account during the determination and evaluation. In particular, such mixtures occur above all when aerosols are formed during the work process, for example as a result of mechanical processes such as the processing of metals or ceramics, during dipping processes in electroplating or during spraying processes. In addition, there are manufacturing processes in which non-volatile substances evaporate at higher temperatures and then condense again, for example, during the hot processing of bitumen or laser welding, and thus occur in the workplace air simultaneously as a vapour and an aerosol. According to DIN EN 13936, for substances with a vapour pressure at room temperature of less than 100 Pa and more than 0.001 Pa sampling procedures should always be selected which determine vapour and aerosols simultaneously in one sampling system. Liquids with boiling points between around 180 °C and 350 °C usually fall into this category. The mass transfer between the vapour and condensed phase is a dynamic process which is continually changing as a result of influences such as temperature or air currents. The exact distribution of a substance in the workplace air between the vapour phase and condensed phase is very difficult to determine, and therefore not possible in practice. Systems with which aerosols and vapour can be determined together (the aerosol is determined as the inhalable fraction) are suitable for sampling such substances.

For substances with the physical properties described and for which there is a MAK value for the respirable fraction of the particle phase, at workplaces it is not possible, for analytical reasons, to determine only the respirable aerosol fraction. Also for these substances it is recommended that the inhalable fraction is determined to cover the “worst-case” scenario. As a result of the dynamic behaviour of these substances, only the sum of the vapour and particle fractions can be determined reliably as long as the particle fraction is determined in its entirety as the inhalable fraction.

Substances in the list in Section II which can occur simultaneously as a vapour and an aerosol are marked with the following note: “The substance can occur simultaneously as vapour and aerosol”.

---


## II List of Substances

In the following list, maximum concentrations in the workplace air (MAK values) of gases, vapours and volatile airborne particulates are expressed in ml/m³ (millilitre (ml) of the substance per cubic metre (m³) of air, ppm), a unit which is unaffected by temperature and barometric pressure, as well as in mg/m³ (milligram (mg) of the substance per cubic metre (m³) of air)\(^{20}\), a unit which is temperature and pressure dependent and has therefore been adjusted to a temperature of 20 °C and barometric pressure of 1013 hPa;\(^{21}\) the MAK values for non-volatile airborne particulates (dust, smoke, mist) are given in mg/m³ air. Non-volatile airborne particulates are substances which have such a low vapour pressure that at normal temperatures a dangerously high concentration cannot occur in the gaseous phase.

Since the health hazards associated with handling a substance can be affected by its volatility, the vapour pressure of a series of highly volatile compounds has been listed for 20 °C, unless otherwise stated. Knowledge of the vapour pressure makes it possible to estimate whether hazardous concentrations of the substance can accumulate by evaporation under the conditions prevailing at the particular workplace. The listed vapour pressure values are taken from the literature, mainly from the US National Library of Medicine, the ECHA, the SRC-Physprop or the GESTIS database, and have been rounded for practical purposes.

<table>
<thead>
<tr>
<th>MAK [ml/m³]</th>
<th>MAK value in ml/m³ (ppm) value or “−” see Section I</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAK [mg/m³]</td>
<td>MAK value in mg/m³ measured as the respirable fraction R see Section I</td>
</tr>
<tr>
<td>Peak lim</td>
<td>peak limitation category I/II or “−” see Section VI</td>
</tr>
<tr>
<td>Perc gr</td>
<td>pregnancy risk group A, B, C, D or “−” see Section VIII</td>
</tr>
<tr>
<td>Perc abs</td>
<td>danger from percutaneous absorption designated with H see Section VII</td>
</tr>
<tr>
<td>Sens</td>
<td>danger of sensitization designated with Sa see Section IV</td>
</tr>
<tr>
<td>– of the airways</td>
<td>Sa</td>
</tr>
<tr>
<td>– of the skin</td>
<td>Sh</td>
</tr>
<tr>
<td>– of the airways and the skin</td>
<td>Sah see Section IV</td>
</tr>
<tr>
<td>Carc cat</td>
<td>carcinogen category 1, 2, 3, 4, 5 see Section III</td>
</tr>
<tr>
<td>Muta cat</td>
<td>germ cell mutagen category 1, 2, 3 A, 3 B, 5 see Section IX</td>
</tr>
</tbody>
</table>

★ indicates a change from the 2019 List of MAK and BAT Values. see Section I

\(^{20}\) “mg/m³” is a measure which means milligram (mg) of the substance per cubic metre (m³) of air

\(^{21}\) Under the specified atmospheric conditions (20 °C, 1013 hPa) the concentration values can be converted according to the following formula:

\[
C(\text{mg/m}^3) = \frac{\text{molar mass in } g}{\text{molar volume in } l} \times C(\text{ml/m}^3)
\]

The molar volume corresponds to 24.1 l at 20 °C and 1013 hPa (mbar). The MAK value is generally established with the units ml/m³; the value in mg/m³ is then calculated with the formula given above. Following a suggestion from users, the calculated values are given correct to two significant figures.
a. Substances with MAK values
and substances listed in Sections IIb and III to XV

MAK values which were established on the condition that the working week exceeds 40 hours have been retained with no change in the toxicological evaluation.

Abietic acid
[514-10-3]  
also includes disproportionation and transposition products.

see section IIb and Xc  
MAK[ml/m³]: –  
MAK[mg/m³]: –  
Peak lim: –  
Preg gr: –  
Sens: Sh  
An immunological genesis of the asthma often seen in persons working with materials containing abietic acid has not been proved.

Acacia melanoxylon → Woods

Acetaldehyde
[75-07-0]  
H₂C-CHO  
MAK[ml/m³]: 50  
MAK[mg/m³]: 91  
Peak lim: I(1)  
A momentary value of 100 ml/m³ (180 mg/m³) should not be exceeded.  
Preg gr: C  
Carc cat: 5  
Muta cat: 5

Acetamide
[60-35-5]  
H₂C-CO-NH₂  
MAK[ml/m³]: –  
MAK[mg/m³]: –  
Peak lim: –  
Preg gr: –  
Carc cat: 3

Acetic acid
[64-19-7]  
H₂C-COOH  
MAK[ml/m³]: 10  
MAK[mg/m³]: 25  
Peak lim: I(2)  
Preg gr: C

Acetic anhydride
[108-24-7]  
H₃C-CO-O-CO-CH₃  
VP[Pa]: 4  
MAK[ml/m³]: 0.1  
MAK[mg/m³]: 0.42  
Peak lim: I(2)  
Preg gr: C

Acetoacetic acid ethyl ester
[141-97-9]  
H₃C-CO-CH₂-COO-CH₂-CH₃  
see section IIb  
MAK[ml/m³]: –  
MAK[mg/m³]: –  
Peak lim: –  
Preg gr: –

Acetone
[67-64-1]  
H₃C-CO-CH₃  
VP[Pa]: 240  
see section XII  
MAK[ml/m³]: 500  
MAK[mg/m³]: 1200  
Peak lim: I(2)  
Preg gr: B  
prerequisite for Group C see documentation

Acetonitrile
[75-05-8]  
H₃C-CN  
VP[Pa]: 96.6  
MAK[ml/m³]: 10  
MAK[mg/m³]: 17  
Peak lim: II(2)  
Preg gr: C  
Perc abs: H  
Acetylacetone → 2,4-Pentanedione  
Acetylene black → Carbon black  
Acetylene tetrabromide → 1,1,2,2-Tetabromoethane  
Acetylene tetrachloride → 1,1,2,2-Tetrachloroethane  
Acetylpropionyl → 2,3-Pentanledione

Acrolein
[107-02-8]  
H₃C-CH-CHO  
VP[Pa]: 290  
see section XII  
MAK[ml/m³]: –  
MAK[mg/m³]: –  
Peak lim: –  
Preg gr: –  
Carc cat: 3
Acrylaldehyde → Acrolein

**Acrylamide**  
[79-06-1] \( \text{H}_2\text{C}\text{-CH-CO-NH}_2 \)

see section XII

- MAK[ml/m³]: –
- MAK[mg/m³]: –
- Peak lim: –
- Perc gr: –
- Perc abs: H
- Sens: Sh
- Carc cat: 2
- Muta cat: 2

**Acrylates and methacrylates**  
see section IVe

**Acrylic acid**  
[79-10-7] \( \text{H}_2\text{C}\text{-CH-COOH} \)

- MAK[ml/m³]: 10
- MAK[mg/m³]: 30
- Peak lim: I(1)
- Perc gr: C

Acrylic acid n-butyl ester → n-Butyl acrylate

Acrylic acid tert-butyl ester → tert-Butyl acrylate

Acrylic acid diester with ethylene glycol → Triethylene glycol diacrylate

Acrylic acid 2-ethoxyethanol diester → Diethylene glycol diacrylate

Acrylic acid ethyl ester → Ethyl acrylate

**Acrylic acid 2-ethylhexyl ester**  
[103-11-7]

The substance can occur simultaneously as vapour and aerosol.

\[ \text{H}_2\text{C}\text{-CH}(-\text{C}_3\text{-H}_2\text{-CH}(-\text{C}_2\text{-H}_2\text{-CH}))\text{-CH} \]

- VP[hPa]: 0.132
- MAK[ml/m³]: 5
- MAK[mg/m³]: 38
- Peak lim: I(1)
- Perc gr: C
- Sens: Sh

**Acrylic acid 2-hydroxyethyl ester**  
[818-61-1] \( \text{H}_2\text{C}\text{-CH-COO-C}_3\text{H}_2\text{OH} \)

see section IV

- Sens: Sh

**Acrylic acid hydroxypropyl ester (all isomers)**  
[25584-83-2]

The substance can occur simultaneously as vapour and aerosol.

\( \text{H}_2\text{C}\text{-CH-COO-C}_3\text{H}_2\text{OH} \)

- VP[hPa]: 0.16 at 25°C (calculated value)
- MAK[ml/m³]: –
- MAK[mg/m³]: –
- Peak lim: –
- Perc gr: –
- Sens: Sh

**Acrylic acid isobornyl ester → Isobornyl acrylate**

**Acrylic acid methyl ester → Methyl acrylate**

**Acrylic acid pentaerythritol triester → Pentaerythritol triacrylate**

**Acrylic acid polymer (neutralized, cross-linked)**

\((\text{CH}_2\text{-CH}((-\text{COO})\text{)}}\text{h} \)

- MAK[mg/m³]: 0.05 R
- Peak lim: I(1)
- Perc gr: C
- Carc cat: 4

**Acrylic acid resin → Acrylic acid polymer (neutralized, cross-linked)**

**Acrylic acid tetramethylene ester → 1,4-Butanediol diacrylate**

**Acrylic acid 1,1,1-(trihydroxymethyl)propane triester → Trimethylolpropane triacrylate**

**Acrylonitrile**  
[107-13-1] \( \text{H}_2\text{C}\text{-CH-CN} \)

- VP[hPa]: 116
- MAK[ml/m³]: –
- MAK[mg/m³]: –
- Peak lim: –
- Perc gr: –
- Sens: Sh
- Carc cat: 2

**Actinolite (fibrous dust) → Asbestos**

**Adipic acid**  
[124-04-9] \( \text{H}_2\text{O}_2\text{-C(\text{CH}_2)_2\text{-CO}_2\text{H}} \)

see section Xc

- MAK[mg/m³]: 2 I
- Peak lim: I(2)
- Perc gr: C

**Aerosols**

see section V

**Afara (Terminalia superba) → Woods**
Aflatoxins
[1402-68-2]
MAK [ml/m³]: –
MAK [mg/m³]: –
Peak lim: –
Preg gr: –
Perc abs: H
Carc cat: 1
Muta cat: 3A

African blackwood (Dalbergia melanoxylon) → Woods
African "cherry" (Tieghemella heckelii) → Woods
African ebony (Diospyros crassiflora) → Woods
African whitewood (Triplochiton scleroxylon) → Woods

Aldrin
[309-00-2]

MAK [mg/m³]: 0.25 I
Peak lim: II(8)
Perc abs: H

Alkali chromates → Chromium(VI) compounds
Alkali citrates → Citric acid

Alkali persulfates

see section IV
Sens: Sah

Alkali salts of benzoic acid → Benzoic acid alkali salts

Alkyl amines, C11-14-branched, monohexyl and dihexyl phosphates
[80939-62-4]
see section IIb and Xc
MAK [ml/m³]: –
MAK [mg/m³]: –
Peak lim: –
Preg gr: –

Alkyl benzenesulfonates C10-C14, linear
[69669-44-9;
85117-50-6]

see section IIb and Xc
MAK [ml/m³]: –
MAK [mg/m³]: –
Peak lim: –
Preg gr: –

N-Alkyl-N,N-dimethyl-N-benzylammonium-chloride → Benzalkonium chloride

Alkyl ether carboxylic acids

see section IIb and Xc
MAK [ml/m³]: –
MAK [mg/m³]: –
Peak lim: –
Preg gr: –

Allyl alcohol
[107-18-6] H₂C=CH-CH₂OH
VP [hPa]: 24
MAK [ml/m³]: –
MAK [mg/m³]: –
Peak lim: –
Preg gr: –
Perc abs: H
Carc cat: 3

Allyl chloride
[107-05-1] H₂C=CH-CH₃Cl
VP [hPa]: 393
MAK [ml/m³]: –
MAK [mg/m³]: –
Peak lim: –
Preg gr: –
Perc abs: H
Carc cat: 3

Allyl 2,3-epoxypropyl ether → Allyl glycidyl ether

Allyl glycidyl ether
[106-92-3] H₂C-O-CH₂-CH₂-O

MAK [ml/m³]: –
MAK [mg/m³]: –
Peak lim: –
Preg gr: –
Perc abs: H
Sens: Sh
Carc cat: 2

4-Allyl-2-methoxyphenol → Eugenol
1-(2-Allyloxy)-2-(2,4-dichlorophenyl)ethyl)-1H-imidazole

see section Xc
MAK[mg/m³]: 2 I
Peak lim: II(2)
Preg gr: C
Perc abs: H

Allyl propyl disulfide

MAK[ml/m³]: 2
MAK[mg/m³]: 12
Peak lim: I(1)

Aluminium-, Aluminium oxide- and Aluminium hydroxide-containing dusts

Aluminium oxide

MAK[m/ml³]: –
MAK[mg/m³]: –
Peak lim: –
Preg gr: –
Perc abs: H
Carc cat: 1
Muta cat: 3A

α-Aluminium oxide

MAK[m/ml³]: –
MAK[mg/m³]: –
Peak lim: –
Preg gr: –
Perc abs: H
Carc cat: 2

1-Amino-4-chlorobenzene

→ p-Chloroaniline

Aluminium silicate fibres
(RCF)
Cristobalite can develop from aluminium silicate fibres used in building materials under thermal load, see documentation.

see section III
MAK[ml/m³]: –
MAK[mg/m³]: –
Peak lim: –
Preg gr: –
Perc abs: H
Carc cat: 2

p-Aminoazobenzene

[60-09-3]

see section IV
Sens: Sh

o-Aminoazotoluene

[97-56-3]

see section VI
Sens: Sh

4-Aminobiphenyl

[92-67-1]
The substance can occur simultaneously as vapour and aerosol.

VP[hPa]: 0.00016 at 25°C (calculated value)

see section XII
MAK[ml/m³]: –
MAK[mg/m³]: –
Peak lim: –
Preg gr: –
Perc abs: H
Carc cat: 1
Muta cat: 3A

1-Aminobutane → n-Butylamine
2-Aminobutane → sec-Butylamine

2-Aminobutanol

[96-20-8]
The substance can occur simultaneously as vapour and aerosol.

HOCH₂(CH(NH₂)CH₂CH₃)

see section Xc
MAK[ml/m³]: 1
MAK[mg/m³]: 3.7
Peak lim: II(2)
Preg gr: D
Perc abs: H

1-Amino-4-chlorobenzene → p-Chloroaniline
2-Amino-5-chlorotoluene → 4-Chloro-o-toluidine

Aminocyclohexane → Cyclohexylamine

1-Amino-3,4-dichlorobenzene → 3,4-Dichloroaniline

4-Aminodiphenylamine

\[101-54-2\]

\[
\begin{aligned}
&\text{MAK}[\text{ml/m}^3]: - \\
&\text{MAK}[\text{mg/m}^3]: - \\
&\text{Peak lim}: - \\
&\text{Preg gr}: - \\
&\text{Perc abs}: \text{H} \\
&\text{Sens}: \text{Sh} \\
&\text{Carc cat}: 3
\end{aligned}
\]

2-Aminoethanol

\[141-43-5\]

The substance can occur simultaneously as vapour and aerosol.

\[
\text{H}_2\text{NCH}_2\text{-CH}_2\text{OH}
\]

\[
\begin{aligned}
&\text{VP}[\text{hPa}]: 0.3 \\
&\text{MAK}[\text{ml/m}^3]: 0.2 \\
&\text{MAK}[\text{mg/m}^3]: 0.51 \\
&\text{Peak lim}: \text{I}(1) \\
&\text{Preg gr}: \text{C} \\
&\text{Sens}: \text{Sh} \\
&\text{Carc cat}: 2
\end{aligned}
\]

2-(2-Aminoethoxy)ethanol

\[929-06-6\]

The substance can occur simultaneously as vapour and aerosol.

\[
\text{HO}(\text{CH}_2\text{-O}(\text{CH}_2\text{-NH}_2
\[
\begin{aligned}
&\text{VP}[\text{hPa}]: 0.002 \text{ at } 25^\circ\text{C} \\
&\text{see section Xc} \\
&\text{MAK}[\text{ml/m}^3]: 0.2 \\
&\text{MAK}[\text{mg/m}^3]: 0.87 \\
&\text{Peak lim}: \text{I}(1) \\
&\text{Preg gr}: \text{C} \\
&\text{Perc abs}: \text{H} \\
&\text{Sens}: \text{Sh}
\end{aligned}
\]

6-Amino-2-ethoxynaphthalene

\[293733-21-8\]

\[
\begin{aligned}
&\text{MAK}[\text{ml/m}^3]: - \\
&\text{MAK}[\text{mg/m}^3]: - \\
&\text{Peak lim}: - \\
&\text{Preg gr}: - \\
&\text{Carc cat}: 2
\end{aligned}
\]

3-Amino-9-ethylcarbazole

\[132-32-1\]

\[
\begin{aligned}
\text{MAK}[\text{ml/m}^3]: - \\
\text{MAK}[\text{mg/m}^3]: - \\
\text{Peak lim}: - \\
\text{Preg gr}: - \\
\text{Carc cat}: 3
\end{aligned}
\]

2-Amino-2-ethyl-1,3-propanediol

\[115-70-8\]

The substance can occur simultaneously as vapour and aerosol.

(\text{HOCH}_2\text{C}(\text{CH}_2\text{)}\text{NH}_2

\[
\begin{aligned}
&\text{VP}[\text{hPa}]: 1.6\times10^{-3} \\
&\text{see section Iib and Xc} \\
&\text{MAK}[\text{ml/m}^3]: - \\
&\text{MAK}[\text{mg/m}^3]: - \\
&\text{Peak lim}: - \\
&\text{Preg gr}: -
\end{aligned}
\]

4-Amino-1-hydroxybenzene → p-Aminophenol

2-Aminoisobutanol → 2-Amino-2-methyl-1-propanol

1-Amino-2-methoxy-5-methylbenzene → 5-Methyl-o-anisidine

3-Amino-4-methoxy-toluene → 5-Methyl-o-anisidine

4-Amino-1-methylbenzene → p-Toluidine

1-Amino-2-methylpropane → Isobutylamine

2-Amino-2-methylpropane → tert-Butylamine

2-Amino-2-methyl-1-propanol

\[124-68-5\]

The substance can occur simultaneously as vapour and aerosol.

\[
\text{CH}_2\text{-C(\text{CH}_3\text{)}\text{NH}_2-\text{CH}_2\text{-OH}}
\]

\[
\begin{aligned}
&\text{VP}[\text{hPa}]: 1.3 \\
&\text{see section Xc} \\
&\text{MAK}[\text{ml/m}^3]: 1 \\
&\text{MAK}[\text{mg/m}^3]: 3.7 \\
&\text{Peak lim}: \text{II}(2) \\
&\text{Preg gr}: \text{C} \\
&\text{Perc abs}: \text{H}
\end{aligned}
\]
3-Aminomethyl-3,5,5-trimethyl-cyclohexylamine (Isophorone diamine)
[2855-13-2]
The substance can occur simultaneously as vapour and aerosol.

Aminonitrofen → 4-(2,4-Dichlorophenoxy)benzenamine
4-Amino-2-nitrophenol → 2-Nitro-4-aminophenol
2-Amino-4-nitrotoluene → 5-Nitro-o-toluidine

3-Aminophenol
[591-27-5]

see section IV
Sens: Sh

4-Aminophenol → p-Aminophenol

p-Aminophenol
[123-30-8]

see section IV
Sens: Sh

p-Aminophenol triglycidylether
→ Triglycidyl-p-aminophenol
2-[(4-Aminophenyl)-amino]-5-nitrobenzenesulfonic acid
→ 4-Nitro-4’-aminodiphenylamine-2-sulfonic acid
2-Aminopropane → Isopropylamine

1-Amino-2-propanol
[78-96-6]
The substance can occur simultaneously as vapour and aerosol.

N-(3-Aminopropyl)-N-dodecylpropane-1,3-diamine
[2372-82-9] \( \text{CH}_3(\text{CH}_2)_{11}-\text{N}((\text{CH}_2)_3-\text{NH}_2)_2 \)
see section Xc

MAK[mg/m³]: 0.05 I
Peak lim: II(8)
Preg gr: C

2-Aminopyridine
[504-29-0]
The substance can occur simultaneously as vapour and aerosol.

Aminotris(methyleneephosphonic acid)
[6419-19-8] \( \text{N(CH}_2\text{PO}_3\text{R})_3 \)
and its sodium salts \( \text{R} = \text{H, Na} \)
see section IIb and Xc

MAK[ml/m³]: –
MAK[mg/m³]: –
Peak lim: –
Preg gr: –

Amitrole
[61-82-5]

MAK[mg/m³]: 0.2 I
Peak lim: II(8)
Preg gr: C
Perc abs: H
Carc cat: 4

Ammonia
[7664-41-7] \( \text{NH}_3 \)
VP[hPa]: 8570

MAK[ml/m³]: 20
MAK[mg/m³]: 14
Peak lim: I(2)
Preg gr: C

Ammonium molybdate → Molybdenum
Ammonium perfluorooctanoate → Perfluorooctanoic acid (PFOA)
Ammonium persulfate → Ammonium sulfate
Ammonium persulfate
[7727-54-0]
\[
\text{NH}_4^+ \text{O} \text{O} \text{O} \text{O} \text{NH}_4^+
\]
see section IV
Sens: Sah

Ammonium sulfamate
[7773-06-0]
\[
\text{NH}_4^+ \text{O} \text{O} \text{O} \text{O} \text{O} \text{NH}_4^+
\]
see section IIIb
MAK[ml/m³]: –
MAK[mg/m³]: –
Peak lim: –
Preg gr: –

Amorphous carbon → Carbon black

Amosite (fibrous dust) → Asbestos

Amyl acetate (all isomers)
\[H_3C\text{-COOC}_3H_7\]
VP[hPa]: <10
MAK[ml/m³]: 50
MAK[mg/m³]: 270
Peak lim: I(1)
– 3-Methylbutyl acetate
\[123-92-2\]
\[\text{CH}_3\text{COO}-\text{(CH}_2\text{)}_2\text{CH(CH}_3\text{)}_2\]
VP[hPa]: 5.3
Preg gr: D
– 3-Pentyl acetate
\[620-11-1\]
\[\text{CH}_3\text{COO}-\text{CH}_2\text{(CH}_3\text{)}\text{CH}_3\]
Preg gr: C
– 2-Methylbutyl acetate
\[624-41-9\]
\[\text{CH}_3\text{COO}-\text{CH}_2\text{CH(C}_2\text{H}_5\text{)}\text{CH}_3\]
Preg gr: C
– 1,1-Dimethylpropyl acetate
\[625-16-1\]
\[\text{CH}_3\text{COO}-\text{C(CH}_3\text{)}_2\text{CH}_3\]
Preg gr: C
– 1-Methylbutyl acetate
\[626-38-0\]
\[\text{CH}_3\text{COO}-\text{CH}(\text{CH}_3\text{)}\text{(CH}_2\text{)}\text{CH}_3\]
VP[hPa]: 9.3
Preg gr: D
– 1-Pentyl acetate
\[628-63-7\]
\[\text{CH}_3\text{COO}-\text{(CH}_2\text{)}_3\text{CH}_3\]
VP[hPa]: 5.3
Preg gr: C

Amyl alcohol → Pentanol (isomers)

\(\alpha\)-Amylaldehyde
[122-40-7]
The substance can occur simultaneously as vapour and aerosol.
\[\text{CHO}\]
see section IV
Sens: Sh

Aniline
[62-53-3]
The substance can occur simultaneously as vapour and aerosol.
\[\text{NH}_2\]
see section XII
MAK[ml/m³]: 2
MAK[mg/m³]: 7.7
Peak lim: II(2)
Preg gr: C
Perc abs: H
Sens: Sh
Carc cat: 4

Aniline yellow → p-Aminoazobenzene

Animal hair, epithelia and other materials derived from animals
see section IV
Sens: Sah

\(o\)-Anisidine
[90-04-0]
\[\text{O}\text{NH}_2\]
MAK[ml/m³]: –
MAK[mg/m³]: –
Peak lim: –
Preg gr: –
Perc abs: H
Carc cat: 2

\(p\)-Anisidine
[104-94-9]
\[\text{H}_2\text{C}\]
\[O\text{NH}_2\]
MAK[ml/m³]: –
MAK[mg/m³]: –
Peak lim: –
Preg gr: –
Perc abs: H
Carc cat: 3

Anthanthrene
[191-26-4]
see Section III, “pyrolysis products of organic materials”
MAK[ml/m³]: –
MAK[mg/m³]: –
Peak lim: –
Preg gr: –
Perc abs: H
Carc cat: 2
Anthophyllite (fibrous dust) → Asbestos

Anthracite dust → Coal mine dust

**Antibiotics**
see section IVe

★ **Antimony**
[7440-36-0] Sb
and its inorganic compounds except for stibine
see section XII
MAK[ml/m³]: –
MAK[mg/m³]: –
Peak lim: –
Preg gr: –
Carc cat: 2
Muta cat: 3A

ANTU → 1-Naphthylthiourea

**p-Aramid**
[26125-61-1]
(fibrous dust)
see section III
MAK[ml/m³]: –
MAK[mg/m³]: –
Peak lim: –
Preg gr: –
Carc cat: 3

Arborvitae (Thuja spp.) → Woods

Arprocarb → Propoxur

Arsenic → Phenyl arsenic compounds

**Arsenic compounds, organic**

**Arsenic**
[7440-38-2]
and inorganic arsenic compounds
see section XII

MAK[ml/m³]: –
MAK[mg/m³]: –
Peak lim: –
Preg gr: –
Perc abs: H
with the exception of metallic arsenic and gallium arsenide
Carc cat: 1
Muta cat: 3A

– Metallic arsenic
[7440-38-2] As

– Arsenic trioxide
[1327-53-3] As₂O₃

– Arsenous acid
[13464-58-9] H₃AsO₃
and its salts, e.g.

– Sodium arsenite
[7784-46-5] NaAsO₂

– Arsenic pentoxide
[1303-28-2] As₂O₅

– Arsenic acid
[7778-39-4] H₃AsO₄
and its salts, e.g.

– Lead arsenate
[3687-31-8] Pb₃(AsO₄)₂

– Calcium arsenate
[7778-44-1] Ca₃(AsO₄)₂

– Gallium arsenide
[1303-00-0] GaAs

Arsenic(III) oxide → Arsenic

Arsenic(V) oxide → Arsenic

**Arsine**
[7784-42-1] AsH₃
see section IIfb
MAK[ml/m³]: –
MAK[mg/m³]: –
Peak lim: –
Preg gr: –

Artificial almond oil → Benzaldehyde

**Asbestos**
[1332-21-4]
(fibrous dust)
Actinolite, Amosite, Anthophyllite, Chrysotile, Crocidolite and Tremolite
see section III
MAK[ml/m³]: –
MAK[mg/m³]: –
Peak lim: –
Preg gr: –
Carc cat: 1
Cigarette smokers bear an increased risk of bronchial cancer.
Asphalt → Bitumen (high-temperature processing, vapours and aerosols)

**Atrazine**
[1912-24-9]

\[
\text{H}_3\text{C} \quad \text{N} \quad \text{N} \quad \text{Cl} \quad \text{H}_3\text{N} \quad \text{N} \quad \text{CH}_3
\]

MAK[mg/m³]: 1 I
Peak lim:  II(2)
Preg gr:  C

**Attapulgite**
[12174-11-7]  \(\text{Mg}_5\text{Si}_6\text{O}_{20}(\text{OH})_2\text{H}_2\text{O}•4\text{H}_2\text{O}\)
(fibrous dust)
see section III

MAK[ml/m³]: –
MAK[mg/m³]: –
Peak lim: –
Preg gr: –
Carc cat: 2

**Auramine**
[492-80-8]

MAK[ml/m³]: –
MAK[mg/m³]: –
Peak lim: –
Preg gr: –
Perc abs:  H
Carc cat: 2
Muta cat: 3B

**Auramine hydrochloride**
[2465-27-2]

MAK[ml/m³]: –
MAK[mg/m³]: –
Peak lim: –
Preg gr: –
Perc abs:  H
Carc cat: 2
Muta cat: 3B

**Australian blackwood (Acacia melanoxylon)** → Woods

**Australian silky oak (Grevillea robusta)** → Woods

**Ayan (Distemonanthus benthamianus)** → Woods

**Azelaic acid**
[123-99-9] \(\text{HO}_2\text{C-(CH}_2)_7\text{CO}_2\text{H}\)

see section IIb and Xc

MAK[ml/m³]: –
MAK[mg/m³]: –
Peak lim: –
Preg gr: –

**Azinphos-methyl**
[86-50-0]

MAK[mg/m³]: 0.1 I
Peak lim:  II(8)
Preg gr:  B
prerequisite for Group Cs ee documentation
Perc abs:  H
Sens:  Sh

**Aziridine → Ethylenimine**

**Azobiscarbamide → Azodicarbonamide**

**Azo colourants**
see also Pigment Yellow
see section III

**Azodicarbonamide**
[123-77-3] \(\text{H}_2\text{N-CO-N=N-CO-NH}_2\)

MAK[mg/m³]: 0.02 I
Peak lim:  I(1)
Preg gr:  D

1,1’-Azodiformamide → Azodicarbonamide

**Azoimide → Hydrazoic acid**

**Barium compounds (soluble)**
(as Ba [7440-39-3])
see section XII

MAK[mg/m³]: 0.5 I
Peak lim:  II(8)
Preg gr:  D

**Barium sulfate**
[7727-43-7] \(\text{BaSO}_4\)
(inhalable fraction)
see section VI and g

MAK[mg/m³]: 4 I
Preg gr:  C

**Barium sulfate**
[7727-43-7] \(\text{BaSO}_4\)
(respirable fraction)
except for ultrafine particles; see section Vh

MAK[mg/m³]: 0.3 R
multiplied with the material density
Peak lim:  II(8)
Preg gr:  C
Carc cat: 4
**Beech wood dust**

MAK[ml/m³]: –
MAK[mg/m³]: –
Peak lim: –
Preg gr: –
Carc cat: 1
Dusts have been shown epidemiologically to be unequivocally carcinogenic. The active carcinogenic principle has not been identified to date.

**Behenic acid**

[112-85-6] \( \text{CH}_3(\text{CH}_2)_{25}\text{COOH} \)

see section IIb and Xc

MAK[ml/m³]: –
MAK[mg/m³]: –
Peak lim: –
Preg gr: –

**Benomyl**

[17804-35-2]

Sens: Sh
Muta cat: 3A

Bentonite → Montmorillonite

Benzal chloride → Benzyl dichloride

**Benzaldehyde**

[100-52-7]

see section IIb

MAK[ml/m³]: –
MAK[mg/m³]: –
Peak lim: –
Preg gr: –

**Benzalkonium chloride**

[8001-54-5]

see section IIb

MAK[ml/m³]: –
MAK[mg/m³]: –
Peak lim: –
Preg gr: –

**Benzene**

[71-43-2]

VP[hPa]: 101

see section XII

MAK[ml/m³]: –
MAK[mg/m³]: –
Peak lim: –
Preg gr: –
Perc abs: H
Carc cat: 2
Muta cat: 3A

1,2-Benzenedicarboxylic acid → Diisodecyl phthalate
1,2-Benzenedicarboxylic acid dibutyl ester → Di-n-butyl phthalate
1,2-Benzenedicarboxylic acid di-2-propenyl ester → Diallyl phthalate
1,3-Benzenediold → Resorcinol

**Benzidine**

[92-87-5]

and its salts

see section XII

MAK[ml/m³]: –
MAK[mg/m³]: –
Peak lim: –
Preg gr: –
Perc abs: H
Carc cat: 1

Benzilidene chloride → Benzyl dichloride
1H-Benzimidazole-2-carbamic acid methyl ester → Carbazin

**1,2-Benzisothiazol-3(2H)-one**

[2634-33-5]

see section IIb and Xc

MAK[ml/m³]: –
MAK[mg/m³]: –
Peak lim: –
Preg gr: –
Sens: Sh

**Benzo[a]anthracene**

[56-55-3]

see Section III, “pyrolysis products of organic materials”

MAK[ml/m³]: –
MAK[mg/m³]: –
Peak lim: –
Preg gr: –
Perc abs: H
Carc cat: 2
Muta cat: 3A

**Benzo[b]fluoranthene**

[205-99-2]

see Section III, “pyrolysis products of organic materials”

MAK[ml/m³]: –
MAK[mg/m³]: –
Peak lim: –
Preg gr: –
Perc abs: H
Carc cat: 2
Muta cat: 3B
Benzo[j]fluoranthene
[205-82-3]

see Section III, “pyrolysis products of organic materials”

MAK[ml/m³]: –
MAK[mg/m³]: –
Peak lim: –
Preg gr: –
Perc abs: H
Carc cat: 2
Muta cat: 3B

Benzo[k]fluoranthene
[207-08-9]

see Section III, “pyrolysis products of organic materials”

MAK[ml/m³]: –
MAK[mg/m³]: –
Peak lim: –
Preg gr: –
Perc abs: H
Carc cat: 2
Muta cat: 3B

Benzoic acid
[65-85-0]
see also Benzoic acid alkali salts
The substance can occur simultaneously as vapour and aerosol. Causes pseudoallergic reactions, see Toxikologisch-arbeitsmedizinische Begründung von MAK-Werten (21st issue 1995).

VP[hPa]: 9×10⁻⁴ at 25°C
see section Xc

MAK[ml/m³]: 0.1
MAK[mg/m³]: 0.5 R
Peak lim: II(4)
Preg gr: C
Perc abs: H

Benzoic acid alkali salts
(as benzoate)see also Benzoic acid
Causes pseudoallergic reactions, see Toxikologisch-arbeitsmedizinische Begründung von MAK-Werten (21st issue 1995).

MAK[mg/m³]: 10 I
Peak lim: II(2)
Preg gr: C
Perc abs: H

Benzoic aldehyde → Benzaldehyde

Benzo[b]naphtho[2,1-d]thiophene
[239-35-0]

see Section III, “pyrolysis products of organic materials”

MAK[ml/m³]: –
MAK[mg/m³]: –
Peak lim: –
Preg gr: –
Perc abs: H
Carc cat: 2
Muta cat: 3B

Benzo[a]pyrene
[50-32-8]

see Section III, “pyrolysis products of organic materials”

MAK[ml/m³]: –
MAK[mg/m³]: –
Peak lim: –
Preg gr: –
Perc abs: H
Carc cat: 2
Muta cat: 2

p-Benzoquinone → Quinone

1H-Benzotriazole
[95-14-7]

The substance can occur simultaneously as vapour and aerosol.

VP[hPa]: 6.89×10⁻² at 25°C
see section Xc

MAK[ml/m³]: –
MAK[mg/m³]: –
Peak lim: –
Preg gr: –
Perc abs: H
Carc cat: 3

Benzotrichloride → Benzyl trichloride

Benzoyl chloride
[98-88-4]
see also α-Chlorinated toluenes
The substance can occur simultaneously as vapour and aerosol.

VP[hPa]: 0.5

MAK[ml/m³]: –
MAK[mg/m³]: –
Peak lim: –
Preg gr: –
Carc cat: 3

Benzoyl peroxide → Dibenzoyl peroxide
**Benzyl alcohol**  
[100-51-6]  
The substance can occur simultaneously as vapour and aerosol.

VP[hPa]: 0.13 at 25°C (calculated value)  
see section Xc  
MAK[ml/m³]: 5  
MAK[mg/m³]: 22  
Peak lim: I(2)  
Preg gr: C  
Perc abs: H

**Benzyl alcohol mono(poly)hemiformal**  
[14548-60-8]  
releases formaldehyde

see section IIb and Xc  
MAK[ml/m³]: –  
MAK[mg/m³]: –  
Peak lim: –  
Preg gr: –  
Sens: Sh

**Benzylbutyl phthalate**  
[85-68-7]  

MAK[mg/m³]: 20 I
Peak lim: II(2)  
Preg gr: C

**Benzyl chloride**  
[100-44-7]  
see also α-chlorinated toluenes

MAK[ml/m³]: –  
MAK[mg/m³]: –  
Peak lim: –  
Preg gr: –  
Perc abs: H  
Carc cat: 2

**Benzyl dichloride**  
[98-87-3]  
see also α-chlorinated toluenes  
The substance can occur simultaneously as vapour and aerosol.

VP[hPa]: 0.5  
MAK[ml/m³]: –  
MAK[mg/m³]: –  
Peak lim: –  
Preg gr: –  
Perc abs: H  
Carc cat: 2

**Benzyl alcohol**  
[100-51-6]  
The substance can occur simultaneously as vapour and aerosol.

VP[hPa]: 0.13 at 25°C (calculated value)  
see section Xc  
MAK[ml/m³]: 5  
MAK[mg/m³]: 22  
Peak lim: I(2)  
Preg gr: C  
Perc abs: H

**Benzyl trichloride**  
[98-07-7]  
see also α-chlorinated toluenes  
The substance can occur simultaneously as vapour and aerosol.

VP[hPa]: 0.2  
MAK[ml/m³]: –  
MAK[mg/m³]: –  
Peak lim: –  
Preg gr: –  
Perc abs: H  
Carc cat: 2

**Beryllium**  
[7440-41-7]  
and its inorganic compounds  
see section XII

Bétê (Mansonia altissima) → Woods  
Bethabara (Tabebuia serratifolia) → Woods  
BHT → 2,6-Di-tert-butyl-p-cresol  
(3,5-Di-tert-butyl-4-hydroxytoluene) (BHT)  
Biacetyl → Diacetyl  
N,N’-Bianiline → Hydrazobenzene  
Biformyl → Glyoxal  
2,2’-Bioxirane → Diepoxybutane

**Biphenyl**  
[92-52-4]  
The substance can occur simultaneously as vapour and aerosol.

VP[hPa]: 0.012 at 25°C  
MAK[ml/m³]: –  
MAK[mg/m³]: –  
Peak lim: –  
Preg gr: –  
Perc abs: H  
Carc cat: 3  
3,3',4,4'-Biphenyltetramine  
→ 3,3'-Diaminobenzidine and its tetrahydrochloride  
Bis(2-aminoethyl)amine → Diethylenetriamine  
N,N'-Bis(2-aminoethyl)-1,2-ethanediamine → Triethylenetetramine
1,3-Bis(aminomethyl)benzene
→ m-Xylylenediamine

Bis[O,O-bis(2-ethylhexyl)phosphorodithioato-S,S’]-zinc → Zinc, O,O’-di-2-ethylhexyl dithiophosphate

Bis(2-chloroethyl)ether → 2,2’-Dichlorodiethyl ether

Bis(2-chloroethyl)sulfide → Bis(β-chloroethyl) sulfide (mustard gas)

Bis(β-chloroethyl)sulfide (mustard gas)
[505-60-2]

\[
\text{CH}_2-\text{CH}_2-\text{S-CH}_2-\text{CH}_2-\text{Cl}
\]

MAK[ml/m³]: –
MAK[mg/m³]: –
Peak lim: –
Preg gr: –
Perc abs: H
Carc cat: 1

Bischloromethyl ether
(dichlorodimethylether)
[542-88-1]
not to be confused with the asymmetric (Dichloromethyl) methyl ether

\[
\text{CH}_2-\text{O-CH}_2-\text{Cl}
\]

MAK[ml/m³]: –
MAK[mg/m³]: –
Peak lim: –
Preg gr: –
Carc cat: 1

4,4'-Bis(dimethylamino)benzophenone
→ Michler’s ketone

3,5-Bis(1,1-dimethylthyl)-4-hydroxybenzene-propanoic acid octadecyl ester
→ 3,5-Di-tert-butyl-4-hydroxyphenyl propionic acid octadecyl ester

3,5-Bis(1,1-dimethylthyl)-4-hydroxybenzene-propanoic acid thiiodi-2,1-ethanediyl ester
→ 2,2’-Thiodiethylene Bis[3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionate]

Bis[dimethyltin(isooctylmercaptoacetate)] sulfide → Methyltin compounds

Bis[dimethyltin(2-mercaptoethyleolate)] sulfide → Methyltin compounds

1,3-Bis(2,3-epoxypropoxy)benzene
→ Diglycidyl resorcinol ether

1,4-Bis(2,3-epoxypropoxy)butane
→ 1,4-Butanediol diglycidyl ether

2,2-Bis(4-(2,3-epoxypropoxy)phenyl)propane
→ Bisphenol A diglycidyl ether

N,N-Bis(2-ethylhexyl)-(1,2,4-triazole-1-yl) methammine
[91273-04-0]
The substance can occur simultaneously as vapour and aerosol.

\[
\begin{align*}
\text{CH}_2&-\text{CH}_2-\text{CH}_2-\text{N}^\text{N} \\
&-\text{CH}_2-\text{C}_6\text{H}_4-\text{N}^\text{N}
\end{align*}
\]

see section Iib and Xc

MAK[ml/m³]: –
MAK[mg/m³]: –
Peak lim: –
Preg gr: –
Sens: Sh

2,2-Bis(p-glycidyloxyphenyl)propane
→ Bisphenol A diglycidyl ether

1,2-Bis(2-hydroxyethoxy)ethane → Triethylene glycol

Bis(2-hydroxyethyl)ether → Diethylene glycol

Bis(hydroxymethyl)acetylene → Butynediol

1,3-Bis(hydroxymethyl)-5,5-dimethyl-2,4-imidazolidinedione → 1,3-Dimethylol-5,5-dimethyl hydantoin

1,3-Bis(hydroxymethyl)urea
[140-95-4]
releases formaldehyde

\[
\text{(HOCH}_2\text{-NH})_2\text{CO}
\]

see section Iib and Xc

MAK[ml/m³]: –
MAK[mg/m³]: –
Peak lim: –
Preg gr: –

2,2-Bis(4-hydroxyphenyl)propane
→ Bisphenol A

Bis(1-hydroxy-2(1H)-pyridinthionato)zinc → Zinc pyrithione

1,2-Bis(2-(methacryloyloxy)ethoxy)ethane → Triethylene glycol dimethacrylate

Bis(2-methoxyethyl)ether → Diethylene glycol dimethyl ether

Bis(2-methoxypropyl)ether → Dipropylene glycol monomethyl ether

Bis[methyltin di(isooctylmercaptoacetate)] sulfide → Methyltin compounds

Bis[methyltin di(2-mercaptoethyleolate)] sulfide → Methyltin compounds

Bismorpholino methane
→ 4,4’-Methylenedimorpholine
Bisphenol A (4,4ʹ-Isopropylidenediphenol) [80-05-7] see section XII

- MAK [mg/m³]: 5 I
- Peak lim: I(1)
- Preg gr: C
- Sens: SP

Bisphenol A diglycidyl ether [1675-54-3] see section IIb

- MAK [ml/m³]: –
- MAK [mg/m³]: –
- Peak lim: –
- Preg gr: –
- Sens: Sh

Bisphenol A diglycidyl methacrylate [1565-94-2] see section IV

- Sens: Sh

Bisphenol A ethoxydimethacrylate [24448-20-2] see section IV

- Sens: Sh

Bisphenol A glycerolate [4687-94-9] see section IV

- Sens: Sh

Bisphenol F diglycidyl ether see section IV

- Sens: Sh
- o,oʹ-Bisphenol F diglycidylether [54208-63-8]
- o,pʹ-Bisphenol F diglycidylether [57469-07-5]
- p,pʹ-Bisphenol F diglycidyl ether [2095-03-6]

- 1,4-Bis(phenylamino)benzene → N,
- N-Diphenyl-p-phenylenediamine
- Bis(1-piperidylthiocarboxyl) disulfide → Dipentamethylenethiouram disulfide

Bithionol [97-18-7] see section Iib and Xc

- MAK [ml/m³]: –
- MAK [mg/m³]: –
- Peak lim: –
- Preg gr: –
- Sens: SP

Bitumen (high-temperature processing, vapours and aerosols) [8052-42-4; 64741-56-6; 64742-93-4] (straight-run bitumen, air-rectified bitumen) can occur simultaneously as vapour and aerosol [8052-42-4; 64741-56-6; 64742-93-4] (straight-run bitumen, air-rectified bitumen)

- VP [hPa]: <1
- MAK [ml/m³]: –
- MAK [mg/m³]: 1.5
- Peak lim: II(2)
- Preg gr: D
- Perc abs: H
- Carc cat: 3

Bitumen (high-temperature processing, vapours and aerosols) [64742-93-4] (bitumen, oxidized) can occur simultaneously as vapour and aerosol

- MAK [ml/m³]: –
- MAK [mg/m³]: –
- Peak lim: –
- Preg gr: –
- Perc abs: H
- Carc cat: 2
- Muta cat: 3B

Black coal dust → Coal mine dust

Bombay blackwood (Dalbergia latifolia) → Woods

Borax → Boric acid
Boric acid
[10043-35-3] and tetraborates

- Boric acid
[10043-35-3]

\[ \text{B(OH)}_3 \]

see section Xc

MAK\( \text{mg/m}^3 \): 10 I
when boric acid and tetraborates are present together, the MAK value is 0.75 mg boron\( \text{m}^3 \)

Peak lim: I(1)
Preg gr: B

- Sodium tetraborate pentahydrate
[12179-04-3]

MAK\( \text{mg/m}^3 \): 5 I

Peak lim: I(1)
Preg gr: C

- Tetraborates
as Boron [7440-42-8]

MAK\( \text{mg/m}^3 \): 0.75 I

Peak lim: I(1)
Preg gr: C

Borono xide
[1303-86-2]

\[ \text{B}_2\text{O}_3 \]

see section IIb

Boront rifluoride
[7637-07-2]

\[ \text{Br}_2 \]

see section IIb

Bowdichia nitida → Woods

Brazilian rosewood (Dalbergia nigra) → Woods

Bromelain
[9001-00-7]

see section IV

Sens: Sa

Bromine
[7726-95-6]

\[ \text{Br}_2 \]

see section IIb

MAK\( \text{ml/m}^3 \): –
MAK\( \text{mg/m}^3 \): –
Peak lim: –
Preg gr: –

2-Bromo-2-(bromomethyl)glutaronitrile → 1,2-Dibromo-2,4-dicyanobutane

2-Bromo-2-(bromomethyl)pentanedinitrile → 1,2-Dibromo-2,4-dicyanobutane

Bromochloromethane
[74-97-5]

\[ \text{CH}_2\text{BrCl} \]

VP(hPa): 147

MAK\( \text{ml/m}^3 \): –
MAK\( \text{mg/m}^3 \): –
Peak lim: –
Preg gr: –
Perc abs: H
Carc cat: 3

2-Bromo-2-chloro-1,1,1-trifluoroethane → Halothane

Bromodichloromethane
[75-27-4]

\[ \text{CHBrC}_2 \]

Perc abs: H
Carc cat: 2
Muta cat: 3B

Bromoethane
[74-96-4]

\[ \text{H}_3\text{C-CH}_2\text{Br} \]

use forbidden as component of metal-working fluids and corrosion inhibitors: see "GefStoffV 2010, Anhang II (zu §16 Absatz 2), Nr.4"

2-Bromo-2-nitro-1,3-propanediol
[52-51-7]

\[ \text{HOCH}_2\text{CBr(NO)}_2\text{CH}_2\text{OH} \]

see section IIb and Xc

MAK\( \text{ml/m}^3 \): –
MAK\( \text{mg/m}^3 \): –
Peak lim: –
Preg gr: –
Perc abs: H
Sens: Sh

1-Bromopropane
[106-94-5]

\[ \text{BrCH}_2\text{CH}_2\text{CH}_2\text{Br} \]

see section XII

MAK\( \text{ml/m}^3 \): –
MAK\( \text{mg/m}^3 \): –
Peak lim: –
Preg gr: –
Perc abs: H
Carc cat: 2

Bromotrifluoromethane
[75-63-8]

\[ \text{BrCF}_3 \]

MAK\( \text{ml/m}^3 \): 1000
MAK\( \text{mg/m}^3 \): 6200
Peak lim: II(8)
Preg gr: C
Brown coal tars → Pyrolysis products of organic materials (soft coal tars)

Brucite (fibrous dust) → Nenalite

Brya ebenus → Woods

1,3-Butadiene
[106-99-0] \( H_2C=CH=CH_2 \)
VP[hPa]: 2477
see section XII

- MAK[ml/m³]: –
- MAK[mg/m³]: –
- Peak lim: –
- Preg gr: –
- Carc cat: 1
- Muta cat: 2

1,3-Butadiene diepoxide → Diepoxybutane

**Butane** (both isomers)

- n-Butane
[106-97-8]

- Isobutane
[75-28-5]

1,4-Butanedicarboxylic acid → Adipic acid

1,4-Butane diglycidyl ether → 1,4-Butanedioyl ether

Butanedioic acid → Succinic acid

1,4-Butanediol diacrylate
[1070-70-8] \( H_2C=CH-CO-(CH_2)_2-O-C=CH_2 \)
see section IV

- Sens: Sh

1,4-Butanediol diglycidyl ether
[2425-79-8] \( \overset{O}{\bigtriangledown} \overset{O}{\bigtriangledown} \cdot CH_2-O-(CH_2)_2-O-CH_2 \)
see section IV

- Sens: Sh

1,4-Butanediol dimethacrylate
[2082-81-7] \( CH_2-CH_2-O-C-(CH_2)_2=CH_2 \)
\( CH_2-CH_2-O-C-(CH_2)_2=CH_2 \)
see section IV

- Sens: Sh

2,3-Butanedione → Diacetyl

1,4-Butane sultone
[1633-83-6] \( \overset{O}{S} \overset{O}{S} \)

- MAK[ml/m³]: –
- MAK[mg/m³]: –
- Peak lim: –
- Preg gr: –
- Carc cat: 3

2,4-Butane sultone
[1121-03-5] \( \overset{O}{S} \overset{O}{S} \)

- MAK[ml/m³]: –
- MAK[mg/m³]: –
- Peak lim: –
- Preg gr: –
- Carc cat: 2

Butane sultone → 1,4-Butane sultone

1-Butanethiol
[109-79-5] \( H_2C-(CH_2)_2-CHSH \)
VP[hPa]: 40

- MAK[ml/m³]: 1
- MAK[mg/m³]: 3.7
- Peak lim: II(2)
- Preg gr: C
- Perc abs: H
- Sens: Sh

2-Butanethiol
[513-53-1] \( \overset{SH}{H_2C} \) \( \overset{SH}{CH_3} \)

- MAK[ml/m³]: 2
- MAK[mg/m³]: 7.48
- Peak lim: II(2)
- Preg gr: D
- Perc abs: H

Butanol (all isomers) → n-Butyl alcohol

Butanol-2-amine → 2-Aminobutanol

2-Butanone
(Methylethyl ketone)
[78-93-3]

- MAK[ml/m³]: 200
- MAK[mg/m³]: 600
- Peak lim: I(1)
- Preg gr: C
- Perc abs: H
Butanone oxime  
[96-29-7]  
\[
\begin{align*}
\text{N-OH} & \\
\text{CH}_3-\text{C}-\text{CH}_2-\text{CH}_3 & 
\end{align*}
\]
MAK[ml/m³]: –  
MAK[mg/m³]: –  
Peak lim: –  
Preg gr: –  
Perc abs: H  
Sens: Sh  
Carc cat: 2

2-Butanone peroxide → Methyl ethyl ketone peroxide

δ-Butan sultone → 1,4-Butane sultone

2-Butenal (trans-) → Crotonaldehyde

1,2-Butene oxide → 1,2-Butylene oxide

Butoxydiglycol → Diethylene glycol monobutyl ether

1-n-Butoxy-2,3-epoxypropane → n-Butyl glycidyl ether (BGE)

1-tert-Butoxy-2,3-epoxypropane → tert-Butyl glycidyl ether

2-Butoxyethanol  
[111-76-2]  
VP[μPa]: 0.8  
see section XII

MAK[ml/m³]: 10  
MAK value for the sum of the concentrations of 2-butoxyethanol and 2-butoxyethyl acetate in the air.  
MAK[mg/m³]: 49  
Peak lim: I(2)  
Preg gr: C  
Perc abs: H

2-(2-Butoxyethoxy)-ethanol → Diethylene glycol monobutyl ether

2-Butoxyethyl acetate  
[112-07-2]  
The substance can occur simultaneously as vapour and aerosol.

VP[μPa]: 0.4  
see section XII

MAK[ml/m³]: 10  
MAK value applies for the sum of the concentrations of 2-butoxyethanol and 2-butoxyethyl acetate in the air.  
MAK[mg/m³]: 66  
Peak lim: I(2)  
Preg gr: C  
Perc abs: H

n-Butyl acetate  
[123-86-4]  
\[
\text{H}_3\text{C}-\text{COOCH}_2-(\text{CH}_2)_2-\text{CH}_3
\]
VA[μPa]: 13.3

MAK[ml/m³]: 100  
MAK[mg/m³]: 480  
Peak lim: I(2)  
Preg gr: C

see section IIb

sec-Butyl acetate  
[105-46-4]  
\[
\text{H}_3\text{C}-\text{COOC(CH}_3)_2
\]

MAK[ml/m³]: –  
MAK[mg/m³]: –  
Peak lim: –  
Preg gr: –

tert-Butyl acetate  
[540-88-5]  
\[
\left(\text{CH}_3\right)_2\text{C-O-C-CH}^\cdot\text{CH}_2
\]

MAK[ml/m³]: 20  
MAK[mg/m³]: 96  
Peak lim: II(2)  
Preg gr: C

n-Butyl acrylate  
[141-32-2]  
\[
\text{H}_3\text{C}-\text{C}^\cdot\text{O}-\text{C-CH}^\cdot\text{CH}_2
\]

VP[μPa]: 5 at 22.2°C  
MAK[ml/m³]: 2  
MAK[mg/m³]: 11  
Peak lim: I(2)  
Preg gr: C  
Perc abs: H  
Sens: Sh

sec-Butyl acrylate  
[1663-39-4]  
\[
\left(\text{CH}_3\right)_2\text{C-O-C-CH}^\cdot\text{CH}_2
\]

see section IV  
Sens: Sh

n-Butyl alcohol  
[71-36-3]  
\[
\text{H}_3\text{C}-\text{(CH}_2)_2-\text{CH}_2\text{OH}
\]

VP[μPa]: 6.3  
see section XII

MAK[ml/m³]: 100  
MAK[mg/m³]: 310  
Peak lim: I(1)  
Preg gr: C

sec-Butyl alcohol  
[78-92-2]  
\[
\text{H}_3\text{C}-\text{CH}_2\text{-CHOH-CH}_3
\]

see section IIb

MAK[ml/m³]: –  
MAK[mg/m³]: –  
Peak lim: –  
Preg gr: –
**tert-Butyl alcohol**  
[H]C\textsubscript{2}COH  
VP[hPa]: 40.8  
MAK[ml/m\textsuperscript{3}]: 20  
MAK[mg/m\textsuperscript{3}]: 62  
Peak lim: II(4)  
Preg gr: C

2-Butylamine → sec-Butylamine  

**iso-Butylamine**  
[H]C\textsubscript{2}CH-CH\textsubscript{2}NH\textsubscript{2}  
MAK[ml/m\textsuperscript{3}]: 2  
MAK[mg/m\textsuperscript{3}]: 6.1  
Peak lim: I(2)  
A momentary value of 5 ml/m\textsuperscript{3} (15 mg/m\textsuperscript{3}) should not be exceeded.  
Preg gr: D

**n-Butylamine**  
H\textsubscript{3}C-(CH\textsubscript{2})\textsubscript{2}-CH\textsubscript{2}NH\textsubscript{2}  
VP[hPa]: 122-128 at 25°C  
MAK[ml/m\textsuperscript{3}]: 2  
MAK[mg/m\textsuperscript{3}]: 6.1  
Peak lim: I(2)  
A momentary value of 5 ml/m\textsuperscript{3} (15 mg/m\textsuperscript{3}) should not be exceeded.  
Preg gr: C

**sec-Butylamine**  
H\textsubscript{3}C-\textsubscript{2}NH\textsubscript{2}  
MAK[ml/m\textsuperscript{3}]: 2  
MAK[mg/m\textsuperscript{3}]: 6.1  
Peak lim: I(2)  
A momentary value of 5 ml/m\textsuperscript{3} (15 mg/m\textsuperscript{3}) should not be exceeded.  
Preg gr: D

**tert-Butylamine**  
[H]C\textsubscript{2}CNH\textsubscript{2}  
MAK[ml/m\textsuperscript{3}]: 2  
MAK[mg/m\textsuperscript{3}]: 6.1  
Peak lim: I(2)  
A momentary value of 5 ml/m\textsuperscript{3} (15 mg/m\textsuperscript{3}) should not be exceeded.  
Preg gr: D

**n-Butylbenzene**  
[H]C\textsubscript{2}CH\textsubscript{2}CH\textsubscript{2}CH\textsubscript{3}  
MAK[ml/m\textsuperscript{3}]: 10  
MAK[mg/m\textsuperscript{3}]: 56  
Peak lim: II(2)  
Preg gr: D  
Perc abs: H

**★ 2-Butyl-1,2-benzisothiazolin-3-one**  
\[4299-07-4\]  
VP[hPa]: 0.00015 at 25°C  
see section IIb and Xc  
MAK[ml/m\textsuperscript{3}]: –  
MAK[mg/m\textsuperscript{3}]: –  
Peak lim: –  
Preg gr: –  
Sens: Sh

**4-tert-Butylbenzoic acid**  
[H]C\textsubscript{2}C\textsubscript{2}-COOH  
see section Xc  
MAK[ml/m\textsuperscript{3}]: 2  
MAK[mg/m\textsuperscript{3}]: 6.1  
Peak lim: I(2)  
Preg gr: D  
Perc abs: H  
Butylocarbamic acid 3-iodo-2-propynyl ester → 3-Iodo-2-propynyl butylocarbamate  
1-(Butylocarbamoyl)-2-benzimidazolecarbamic acid methyl ester → Benomyl

**p-tert-Butylcatechol**  
[C(CH\textsubscript{3})\textsubscript{2}]\textsubscript{2}-OH  
see section IV  
Sens: Sh

n-Butyl chloroformate → Chloroformic acid butyl ester

**2-tert-Butyl-p-cresol**  
[C\textsubscript{6}H\textsubscript{4}]C\textsubscript{2}CH\textsubscript{3}  
The substance can occur simultaneously as vapour and aerosol.  
VP[hPa]: 0.02  
see section IIb  
MAK[ml/m\textsuperscript{3}]: –  
MAK[mg/m\textsuperscript{3}]: –  
Peak lim: –  
Preg gr: –  
Butyldiglycol → Diethylene glycol monobutyl ether  
1,4-Butylene glycol diacrylate  
→ 1,4-Butanediol diacylate
1,2-Butylene oxide
[106-88-7]

\(\text{VP\[hPa\]}: 188\)

MAK\[ml/m^3\]: –
MAK\[mg/m^3\]: –
Peak lim: –
Preg gr: –
Perc abs: H
Carc cat: 2

n-Butyl glycidyl ether (BGE)
[2426-08-6]

\(\text{VP\[hPa\]}: 3.3\times10^{-3}\) at 25°C

MAK\[ml/m^3\]: –
MAK\[mg/m^3\]: –
Peak lim: –
Preg gr: –
Perc abs: H
Sens: Sh
Carc cat: 2

Butyl glycolate → Hydroxyacetic acid butyl ester

tert-Butyl glycidyl ether
[7665-72-7]

\(\text{VP\[hPa\]}: 0.051\) at 25°C

MAK\[ml/m^3\]: 0.080
MAK\[mg/m^3\]: 0.5
Peak lim: II(2)
Preg gr: D
Perc abs: H
Sens: Sh
Carc cat: 3
Muta cat: 2

Butyl mercaptan → 1-Butanethiol

n-Butyl methacrylate
[97-88-1]

\(\text{VP\[hPa\]}: 3.3\times10^{-3}\) at 25°C

MAK\[ml/m^3\]: 20 I
Peak lim: II(1)
Preg gr: C
Carc cat: 3

n-Butyl methyl ether
[1634-04-4]

\(\text{VP\[hPa\]}: \sim 300\)

see section XII

MAK\[ml/m^3\]: 50
MAK\[mg/m^3\]: 180
Peak lim: I(1.5)
Preg gr: C
Carc cat: 3

p-tert-Butylphenol
[98-54-4]

The substance can occur simultaneously as vapour and aerosol.

p-tert-Butylphenol → Formaldehyde condensation products with p-tert-butylphenol

p-tert-Butylphenyl glycidyl ether
[3101-60-8]

The substance can occur simultaneously as vapour and aerosol.

Butyl mercaptan → 1-Butanethiol

n-Butyl methacrylate
[97-88-1]

\(\text{VP\[hPa\]}: 3.3\times10^{-3}\) at 25°C

MAK\[ml/m^3\]: 20 I
Peak lim: II(1)
Preg gr: C
Carc cat: 3

Butyl mercaptan → 1-Butanethiol

n-Butyl methacrylate
[97-88-1]

\(\text{VP\[hPa\]}: 3.3\times10^{-3}\) at 25°C

MAK\[ml/m^3\]: 20 I
Peak lim: II(1)
Preg gr: C
Carc cat: 3

Butyl mercaptan → 1-Butanethiol
n-Butyltin compounds
(as Sn [7440-31-5])
The substance can occur simultaneously as vapour and aerosol.

MAK[ml/m³]: 0.004
MAK[mg/m³]: 0.02
Peak lim: I(1)
Sens: –
For butyltin compounds whose organic ligands were already designated with “Sa” or “Sh”, these designations also apply.
Car cat: 4

– Mono-n-butyltin compounds
  Preg gr: C

– Di-n-butyltin compounds
  Preg gr: B

– Tri-n-butyltin compounds
  Preg gr: B

– Tetra-n-butyltin
  [1461-25-2]
  Preg gr: C

p-tert-Butyl toluene
[98-51-1]
The substance can occur simultaneously as vapour and aerosol.

VP[hPa]: 0.87
see section IIb

MAK[ml/m³]: –
MAK[mg/m³]: –
Preg gr: –

iso-Butyl vinyl ether
[109-53-5]

MAK[ml/m³]: 20
MAK[mg/m³]: 83
Peak lim: I(1)
Preg gr: D

Butynediol
[110-65-6]
The substance can occur simultaneously as vapour and aerosol.

HO-CH₂-C-C₂H₅-OH

VP[hPa]: 1.7×10⁻³
MAK[ml/m³]: 0.1
MAK[mg/m³]: 0.36
Peak lim: I(1)
Preg gr: C
Perc abs: H
Sens: Sh

γ-Butyrolactone
[96-48-0]

see section IIb

MAK[ml/m³]: –
MAK[mg/m³]: –
Preg gr: –
Perc abs: H

Cadmium
[7440-43-9] Cd
and its inorganic compounds (inhalable fraction)
see section XII

MAK[ml/m³]: –
MAK[mg/m³]: –
Preg gr: –
Perc abs: H
Car cat: 1
Muta cat: 3A

Calcium bis(dinonylnaphthalenesulphonate)
[57855-77-3]

see section IIb and Xc

MAK[ml/m³]: –
MAK[mg/m³]: –
Preg gr: –

Calcium hydroxide
[1305-62-0] Ca(OH)₂
see section Xc

MAK[mg/m³]: 1 I
Peak lim: II(2)
Preg gr: C

Calcium arsenate → Arsenic

Calcium carbimide → Calcium cyanamide

Calcium chromate → Chromium(VI) compounds

Calcium cyanamide
[156-62-7] CaCN₂

MAK[mg/m³]: 1 I
Peak lim: II(2)
Preg gr: C
classification in Pregnancy Risk Group C was re-evaluated in 2011 and confirmed
Perc abs: H

Calcium molybdate → Molybdenum

Calcium oxide
[1305-78-8] CaO

MAK[mg/m³]: 1 I
Peak lim: I(2)
Preg gr: C
Calcium petroleum sulfonates → Petroleum sulfonates, calcium salts (technical mixture in mineral oil)

**Calcium sodium metaphosphate**
[23209-59-8] \( \text{x CaO} \cdot \text{x Na}_2\text{O} \cdot \text{P}_2\text{O}_5 \) (fibrous dust)
see section III
- MAK[mL/m³]: –
- MAK[mg/m³]: –
- Peak lim: –
- Preg gr: –
- Carc cat: 3

**Calcium sulfate**
(inhalable fraction)
- Anhydrite [7778-18-9]
- Hemihydrate [10034-76-1]
- Dihydrate [10101-41-4]
- Gypsum [13397-24-5]
see section VI and g
- MAK[mg/m³]: 4 I
- Preg gr: C

**Calcium sulfate**
(respirable fraction)
- Anhydrite [7778-18-9]
- Hemihydrate [10034-76-1]
- Dihydrate [10101-41-4]
- Gypsum [13397-24-5]
see section VI and g
- MAK[mg/m³]: 1.5 R
- Preg gr: C

Calocedrus decurrens → Woods

CAM → Chloroacetamide-N-methylol (CAM)

**Camphor**
[76-22-2]
The substance can occur simultaneously as vapour and aerosol.

- VP[hPa]: 0.027
- see section IIb
- MAK[mL/m³]: –
- MAK[mg/m³]: –
- Peak lim: –
- Preg gr: –

**ε-Caprolactam**
[105-60-2]
(vapour and dust)
The substance can occur simultaneously as vapour and aerosol.

\[
\text{H}_2\text{N-CO-O-CH}_2\text{-CH}_3
\]

- VP[hPa]: \( \text{1.4} \times 10^{-3} \)
- MAK[mg/m³]: 5 I
- Peak lim: II(2)
- Preg gr: C
- classification in Pregnancy Risk Group C was re-evaluated in 2011 and confirmed

**Carbamate acid ethyl ester**
[51-79-6]
The substance can occur simultaneously as vapour and aerosol.

\[
\text{H}_2\text{N-CO-O-CH}_2\text{-CH}_3
\]

- VP[hPa]: 13 at 78°C
- MAK[mL/m³]: –
- MAK[mg/m³]: –
- Peak lim: –
- Preg gr: –
- Perc abs: H
- Carc cat: 2
- Muta cat: 3A

**Carbaryl**
[63-25-2]

\[
\text{H}_3\text{C}\text{-CH}=\text{N}-\text{COOCH}_3
\]

- MAK[mg/m³]: 5 I
- Peak lim: II(4)
- Perc abs: H

**Carbendazim**
[10605-21-7]

\[
\text{H}_3\text{C}\text{-CH}=\text{N}-\text{COOCH}_3
\]

- MAK[mg/m³]: 10 I
- Peak lim: II(4)
- Preg gr: B
- Muta cat: 5

Carbodicyclohexylimide → Dicyclohexylcarbodiimide

**Carbon black**
(inhalable fraction)
- MAK[mL/m³]: –
- MAK[mg/m³]: –
- Peak lim: –
- Preg gr: –
- Carc cat: 3

**Carbon dioxide**
[124-38-9]
\( \text{CO}_2 \)
- MAK[mL/m³]: 5000
- MAK[mg/m³]: 9100
- Peak lim: II(2)
Carbon disulfide
[75-15-0] \( \text{CS}_2 \)
see section XII
MAK[m/m³]: 5
MAK[mg/m³]: 16
Peak lim: II(2)
Preg gr: B
Perc abs: H

Carbon monoxide
[630-08-0] \( \text{CC} \)
see section XII
MAK[m/m³]: 30
MAK[mg/m³]: 35
Peak lim: II(2)
Preg gr: B

Carbon silicide → Silicon carbide

Carbon tetrachloride
[56-23-5] \( \text{CCl}_4 \)
see section XII
MAK[m/m³]: 0.5
MAK[mg/m³]: 3.2
Peak lim: II(2)
Preg gr: C
Perc abs: H
Carc cat: 4

Carbonyl chloride → Phosgene

Carborundum → Silicon carbide

N-Carboxyanthranilic anhydride
[118-48-9]
see section IV
Sens: Sh

5(or 6)-Carboxy-4-hexylcyclohex-2-ene-1-\( \text{CO}_2 \text{H} \)
[53980-88-4]
see section IIb and Xc
MAK[m/m³]: –
MAK[mg/m³]: –
Peak lim: –
Preg gr: –

Cedar (Thuja spp., Calocedrus spp.) → Woods

Cellulases
see section IV
Sens: Sa

Cereal flour dusts
Rye, Wheat
see section IV
Sens: Sa

Ceylon ebony (Diospyros ebenum) → Woods

Cherry mahogany (Tieghemella heckelii) → Woods

1-(3-Chlorallyl)-3,5,7-triaza-1-azoniaadamantane chloride → Methenamine 3-chloroallylchloride

Chloramine → N-Methyl-bis(2-chloroethyl)amine (nitrogen mustard)

Chlordane
[57-74-9]

Chlordecone
[143-50-0]

Chlorinated biphenyl oxides
several CAS Nos, e.g.
[55720-99-5]
Chlorinated biphenyl oxides form a group of compounds with different degrees and positions of chlorine substitution. Chlorinated biphenyl oxides with low chlorine content can occur as a particle-vapour mixture, whereas chlorinated biphenyl oxides with a large quantity of chlorine occur only as particles.

Cereal flour dusts
Rye, Wheat
see section IV
Sens: Sa

Ceylon ebony (Diospyros ebenum) → Woods

Cherry mahogany (Tieghemella heckelii) → Woods

1-(3-Chlorallyl)-3,5,7-triaza-1-azoniaadaman- tane chloride → Methenamine 3-chloroallylchloride

Chloramine → N-Methyl-bis(2-chloroethyl)amine (nitrogen mustard)

Chlordane
[57-74-9]

Chlordecone
[143-50-0]

Chlorinated biphenyl oxides
several CAS Nos, e.g.
[55720-99-5]
Chlorinated biphenyl oxides form a group of compounds with different degrees and positions of chlorine substitution. Chlorinated biphenyl oxides with low chlorine content can occur as a particle-vapour mixture, whereas chlorinated biphenyl oxides with a large quantity of chlorine occur only as particles.

Cereal flour dusts
Rye, Wheat
see section IV
Sens: Sa

Ceylon ebony (Diospyros ebenum) → Woods

Cherry mahogany (Tieghemella heckelii) → Woods

1-(3-Chlorallyl)-3,5,7-triaza-1-azoniaadamantane chloride → Methenamine 3-chloroallylchloride

Chloramine → N-Methyl-bis(2-chloroethyl)amine (nitrogen mustard)

Chlordane
[57-74-9]

Chlordecone
[143-50-0]

Chlorinated biphenyl oxides
several CAS Nos, e.g.
[55720-99-5]
Chlorinated biphenyl oxides form a group of compounds with different degrees and positions of chlorine substitution. Chlorinated biphenyl oxides with low chlorine content can occur as a particle-vapour mixture, whereas chlorinated biphenyl oxides with a large quantity of chlorine occur only as particles.
Chlorinated biphenyls
[53469-21-9]
Chlorinated biphenyls form a group of compounds with different degrees and positions of chlorine substitution; often, more than one of these substances occur simultaneously at the workplace. Chlorinated biphenyls with low chlorine content (up to 5 chlorine atoms) can occur as a particle-vapour mixture, whereas chlorinated biphenyls with a large quantity of chlorine occur only as particles.

\[ \text{Cl}_x \text{H}_{y-x} \]

see section XII

MAK[mg/m³]: 0.003 I
(PCB 28 + PCB 52 + PCB 101 + PCB 138 + PCB 153 + PCB 180) x 5
Peak lim: I(8)
Preg gr: B
Note regarding prerequisites for Pregnancy Risk Group C see BAT addendum; see also Section XII
Perc abs: H
Carc cat: 4
Muta cat: 5

Chlorinated camphene
[8001-35-2]

\[ \text{Cl}_x \text{CH}_2 \]

\[ \text{CH}_3 \ x = 4 - 12 \]

O: 8

MAK[ml/m³]: –
MAK[mg/m³]: –
Peak lim: –
Preg gr: –
Perc abs: H
Carc cat: 2

Chlorinated naphthalenes
Chlorinated naphthalenes form a group of compounds with different degrees and positions of chlorine substitution. Chlorinated naphthalenes with low chlorine content can occur as a particle-vapour mixture, whereas chlorinated naphthalenes with a large quantity of chlorine occur only as particles.

\[ \text{Cl}_x \text{CH}_2 \]

\[ \text{O: 8} \]

see section IIb

MAK[ml/m³]: –
MAK[mg/m³]: –
Peak lim: –
Preg gr: –
Perc abs: H
Carc cat: 2

Chlorinated paraffins
unbranched chains, several CAS Nos, e.g.
[63449-39-8]
Chlorinated paraffins form a group of compounds with different degrees and positions of chlorine substitution. Chlorinated paraffins with low chlorine content and short chain length can occur as a particle-vapour mixture, whereas chlorinated paraffins with a large quantity of chlorine or with long alkyl chains occur only as particles.

\[ C_{x+y} \text{H}_{2x-2y} \text{Cl}_y \]

\[ n = 1-28 \]

20–70% Cl

Peak lim: –
Preg gr: –
Carc cat: 3

α-Chlorinated toluenes:
mixture of Benzoyl chloride [98-88-4],
Benzylic chloride [100-44-7],
Benzylic dichloride [98-87-3],
Benzylic trichloride [98-07-7]

MAK[ml/m³]: –
MAK[mg/m³]: –
Peak lim: –
Preg gr: –
Perc abs: H
Carc cat: 1

Chlorine
[7782-50-5]

\[ \text{Cl}_2 \]

MAK[ml/m³]: 0.5
MAK[mg/m³]: 1.5
Peak lim: I(1)
Preg gr: C

Chlorine dioxide
[10049-04-4]

\[ \text{Cl}_2 \text{O} \]

MAK[ml/m³]: 0.1
MAK[mg/m³]: 0.28
Peak lim: I(1)
Preg gr: D

Chlorine trifluoride
[7790-91-2]

\[ \text{ClF}_3 \]

see section IIb

Chlorite → Talc

Chloroacetaldehyde
[107-20-0]

\[ \text{CICH}_2\text{CH}_2 \]

VP[hPa]: 133

MAK[ml/m³]: –
MAK[mg/m³]: –
Peak lim: –
Preg gr: –
Perc abs: H
Carc cat: 3

2-Chloroacetamide
[79-07-2]

\[ \text{CICH}_2\text{CO-NH}_2 \]

see section IIb and Xc

MAK[ml/m³]: –
MAK[mg/m³]: –
Peak lim: –
Preg gr: –
Perc abs: H
Sens: Sh
Chloroacetamide-N-methylol (CAM)  
[2832-19-1]  
releases formaldehyde  
\[H_2\text{CCl-}\text{CO-NH-CH}_2\text{OH}\]  
see section Xc  
MAK[ml/m³]: –  
MAK[mg/m³]: –  
Peak lim: –  
Preg gr: –  
Sens: Sh  
Carc cat: 3  

Chloroacetic acid → Monochloroacetic acid  

Chloroacetic acid methyl ester  
[96-34-4]  
\[^{\text{Cl-CH}_2\text{CO-OCH}_3}\]  
VP[hPa]: ~7  
MAK[ml/m³]: 1  
MAK[mg/m³]: 4.5  
Peak lim: I(1)  
Preg gr: C  
classification in Pregnancy Risk Group C was re-evaluated in 2011 and confirmed  
Perc abs: H  
Sens: Sh  

Chloroacetyl chloride  
[79-04-9]  
\[^{\text{ClCH}_2\text{COCl}}\]  
see section IIb  
MAK[ml/m³]: –  
MAK[mg/m³]: –  
Peak lim: –  
Preg gr: –  
Perc abs: H  

2-Chloroacrylonitrile  
[920-37-6]  
\[^{\text{H}_2\text{C=CCICN}}\]  
MAK[ml/m³]: –  
MAK[mg/m³]: –  
Peak lim: –  
Preg gr: –  
Carc cat: 3  

γ-Chloroallyl chloride → 1,3-Dichloropropene  

4-Chloroaniline → p-Chloroaniline  

o-Chloroaniline  
[95-51-2]  
The substance can occur simultaneously as vapour and aerosol.  

m-Chloroaniline  
[108-42-9]  
The substance can occur simultaneously as vapour and aerosol.  

\[\text{H}_3\text{NCl}\]  
VP[hPa]: 0.031  
see section IIb  
MAK[ml/m³]: –  
MAK[mg/m³]: –  
Peak lim: –  
Preg gr: –  
Perc abs: H  
Sens: Sh  

p-Chloroaniline  
[106-47-8]  
The substance can occur simultaneously as vapour and aerosol.  

\[\text{CHCl}-\text{NH}_2\]  
VP[hPa]: 0.036 at 26°C  
MAK[ml/m³]: –  
MAK[mg/m³]: –  
Peak lim: –  
Preg gr: –  
Perc abs: H  
Sens: Sh  
Carc cat: 2  

Chlorobenzene  
[108-90-7]  

\[\text{Cl}\]  
VP[hPa]: 12  
see section XII  
MAK[ml/m³]: 5  
MAK[mg/m³]: 23  
Peak lim: II(2)  
Preg gr: C  

Chlorobenzoic acid (all isomers)  
The substance can occur simultaneously as vapour and aerosol.  

\[\text{Cl}\]  
VP[hPa]: 0.0031 at 25°C (calculated value)  
see section IIb  
MAK[ml/m³]: –  
MAK[mg/m³]: –  
Peak lim: –  
Preg gr: –  

– o-Chlorobenzoic acid  
[118-91-2]  

– m-Chlorobenzoic acid  
[535-80-8]  

– p-Chlorobenzoic acid  
[74-11-3]
p-Chlorobenzotrichloride
[5216-25-1]
The substance can occur simultaneously as vapour and aerosol.

\[
\begin{align*}
\text{VP}[\text{hPa}]: & \quad 0.2 \\
\text{MAK}[\text{ml/m}^3]: & \quad - \\
\text{MAK}[\text{mg/m}^3]: & \quad - \\
\text{Peak lim}: & \quad - \\
\text{Preg gr}: & \quad - \\
\text{Perc abs}: & \quad H \\
\text{Carc cat}: & \quad 2
\end{align*}
\]

Chlorobromomethane → Bromochloromethane
2-Chloro-1,3-butadiene → Chloroprene

p-Chloro-m-cresol
[59-50-7]
The substance can occur simultaneously as vapour and aerosol.

\[
\begin{align*}
\text{VP}[\text{hPa}]: & \quad 0.067 \\
& \quad \text{see section IIb and Xc}
\end{align*}
\]

\[
\begin{align*}
\text{MAK}[\text{ml/m}^3]: & \quad - \\
\text{MAK}[\text{mg/m}^3]: & \quad - \\
\text{Peak lim}: & \quad - \\
\text{Preg gr}: & \quad - \\
\text{Sens}: & \quad \text{Sh}
\end{align*}
\]

1-Chloro-1,1-difluoroethane (FC-142b)
[75-68-3]

\[
\begin{align*}
\text{MAK}[\text{ml/m}^3]: & \quad 1000 \\
\text{MAK}[\text{mg/m}^3]: & \quad 4200 \\
\text{Peak lim}: & \quad \text{II}(8) \\
\text{Preg gr}: & \quad \text{D}
\end{align*}
\]

Chlorodifluoromethane (FC-22)
[75-45-6]

\[
\text{CHClF}_2
\]

\[
\begin{align*}
\text{MAK}[\text{ml/m}^3]: & \quad 500 \\
\text{MAK}[\text{mg/m}^3]: & \quad 1800 \\
\text{Peak lim}: & \quad \text{II}(8) \\
\text{Preg gr}: & \quad \text{C}
\end{align*}
\]

2-Chloro-1-((difluoromethoxy)-1,1,2-tri-
fluoroethane → Enflurane

(R)-N-((5-Chloro-3,4-dihydro-8-hydroxy-3-methyl-1-oxo-1H-2-benzopyran-7-yl)
carbonyl)-L-phenylalanine → Ochratoxin A

2-Chloro-10-(3-dimethylaminopropyl)
phenothiazine → Chlorpromazine

Chlorodimethyl ether → Monochlorodimethyl ether

1-Chloro-2,4-dinitrobenzene
[97-00-7]

\[
\begin{align*}
\text{Sens}: & \quad \text{Sh}
\end{align*}
\]

1-Chloro-2,3-epoxypropane
(Epichlorohydrin)
[106-89-8]

\[
\begin{align*}
\text{MAK}[\text{ml/m}^3]: & \quad - \\
\text{MAK}[\text{mg/m}^3]: & \quad - \\
\text{Peak lim}: & \quad - \\
\text{Preg gr}: & \quad - \\
\text{Perc abs}: & \quad H \\
\text{Sens}: & \quad \text{Sh}
\end{align*}
\]

Carc cat: 2
Muta cat: 3B

Chloroethane
[75-00-3]

\[
\text{H}_2\text{C=CHCl}
\]

\[
\begin{align*}
\text{MAK}[\text{ml/m}^3]: & \quad - \\
\text{MAK}[\text{mg/m}^3]: & \quad - \\
\text{Peak lim}: & \quad - \\
\text{Preg gr}: & \quad - \\
\text{Perc abs}: & \quad H \\
\text{Carc cat}: & \quad 3
\end{align*}
\]

Chloroethanoic acid → Monochloroacetic acid

2-Chloroethanol
[107-07-3]

\[
\text{CHCl}_2\text{CH}_2\text{OH}
\]

\[
\text{VP}[\text{hPa}]: 7 \\
\text{MAK}[\text{ml/m}^3]: 2 \\
\text{MAK}[\text{mg/m}^3]: 6.7 \\
\text{Peak lim}: \text{II}(1) \\
\text{Preg gr}: \text{C} \\
\text{Perc abs}: \text{H}
\]

Chlorofluoromethane (FC-31)
[593-70-4]

\[
\text{CH}_2\text{ClF}
\]

\[
\begin{align*}
\text{MAK}[\text{ml/m}^3]: & \quad - \\
\text{MAK}[\text{mg/m}^3]: & \quad - \\
\text{Peak lim}: & \quad - \\
\text{Preg gr}: & \quad - \\
\text{Carc cat}: & \quad 2
\end{align*}
\]
**Chloroform**

[67-66-3]  \( \text{CHCl}_3 \)

VP[hPa]: 210

- MAK[ml/m³]: 0.5
- MAK[mg/m³]: 2.5
- Peak lim: II(2)
- Preg gr: C
- Perc abs: H
- Carc cat: 4

**Chloroformic acid butyl ester**

[543-27-1; 592-34-7]  \( \text{Cl-C-O-CH}_2\text{-CH(CH}_3\text{)}_2 \)

VP[hPa]: 7

- MAK[ml/m³]: 0.2
- MAK[mg/m³]: 1.1
- Peak lim: I(2)
- Preg gr: C

**Chloroformic acid ethyl ester**

[541-41-3]  \( \text{Cl-COO-CH}_2\text{-CH}_3 \)

VP[hPa]: 54

- MAK[ml/m³]: –
- MAK[mg/m³]: –
- Peak lim: –
- Preg gr: –
- Carc cat: 3

**Chloroformic acid methyl ester**

[79-22-1]  \( \text{Cl-C-O-CH}_3 \)

VP[hPa]: 137

- MAK[ml/m³]: 0.2
- MAK[mg/m³]: 0.78
- Peak lim: I(2)
- Preg gr: C

**N-Chloroformylmorpholine**

[15159-40-7]

The substance can occur simultaneously as vapour and aerosol.

VP[hPa]: 0.4

- MAK[ml/m³]: –
- MAK[mg/m³]: –
- Peak lim: –
- Preg gr: –
- Carc cat: 2

2-Chloro-N-hydroxymethylacetamide

→ Chloroacetamide-N-methylol (CAM)

N-((3R)-5-Chloro-8-hydroxy-3-methyl-1-oxo-7-isochromanyl)carbonyl)-3-phenyl-L-alanine

→ Ochratoxin A

Chloromethane → Methyl chloride

---

**4-Chloromethyl-biphenyl**

[1667-11-4]

The substance can occur simultaneously as vapour and aerosol.

- see section IIb
  - MAK[ml/m³]: –
  - MAK[mg/m³]: –
  - Peak lim: –
  - Preg gr: –

**5-Chloro-2-methyl-2,3-dihydroisothiazol-3-one and 2-Methyl-2,3-dihydroisothiazol-3-one**

[26172-55-4; 2682-20-4]

- mixture in ratio 3:1
- see section Xc
  - MAK[mg/m³]: 0.2 I
  - Peak lim: I(2)
  - Preg gr: C
  - classification in Pregnancy Risk Group C was re-evaluated in 2011 and confirmed
  - Sens: Sh

bis-Chloromethyl ether → Bischloromethyl ether

**3-Chloro-2-methylpropene**

[563-47-3]

- VP[hPa]: 140
- Peak lim: –
- Preg gr: –
- Carc cat: 3

1-Chloro-2-nitrobenzene → o-Chloronitrobenzene

1-Chloro-4-nitrobenzene → p-Chloronitrobenzene

**o-Chloronitrobenzene**

[88-73-3]

The substance can occur simultaneously as vapour and aerosol.

- VP[hPa]: 0.43
- Peak lim: –
- Preg gr: –
- Perc abs: H
- Carc cat: 3

1-Chloro-2-nitrobenzene → o-Chloronitrobenzene

1-Chloro-4-nitrobenzene → p-Chloronitrobenzene

---
**m-Chloronitrobenzene**  
[121-73-3]  
The substance can occur simultaneously as vapour and aerosol.  
\[ \begin{array}{c} \text{Cl} \\
\text{NO}_2 \\
\text{Cl} 
\end{array} \]  

VP[hPa]: 0.129 at 25°C  
see section IIb  
MAK[ml/m³]: –  
MAK[mg/m³]: –  
Peak lim: –  
Preg gr: –  
Perc abs: H

**p-Chloronitrobenzene**  
[100-00-5]  
The substance can occur simultaneously as vapour and aerosol.  
\[ \begin{array}{c} \text{O}_2 \text{N} \\
\text{Cl} \\
\text{Cl} 
\end{array} \]  

VP[hPa]: 0.085  
MAK[ml/m³]: –  
MAK[mg/m³]: –  
Peak lim: –  
Preg gr: –  
Perc abs: H  
Carc cat: 3

**1-Chloro-1-nitropropane**  
[600-25-9]  
\[ \text{H}_2\text{C}-\text{CH}_2\text{CHCINO}_2 \]  
see section IIb  
MAK[ml/m³]: –  
MAK[mg/m³]: –  
Peak lim: –  
Preg gr: –  
Perc abs: H  
Carc cat: 3

**4-Chloro-1,2-propanediol (α-Chlorohydrin)**  
[96-24-2]  
The substance can occur simultaneously as vapour and aerosol.  
\[ \begin{array}{c} \text{Cl} \\
\text{O} \\
\text{HOCH}_2\text{-CHOH-CH}_2\text{Cl} 
\end{array} \]  

VP[hPa]: 0.27  
MAK[ml/m³]: 0.005  
MAK[mg/m³]: 0.023  
Peak lim: II(8)  
Preg gr: D  
Perc abs: H  
Carc cat: 3

**Chlorothalonil**  
[1897-45-6]  
The substance can occur simultaneously as vapour and aerosol.  
\[ \begin{array}{c} \text{Cl} \\
\text{CN} \\
\text{Cl} \\
\text{Cl} 
\end{array} \]  

VP[hPa]: <0.013 at 40°C  
see section IIb and Xc  
MAK[ml/m³]: –  
MAK[mg/m³]: –  
Peak lim: –  
Preg gr: –  
Sens: Sh

**Chloroprene**  
[126-99-8]  
\[ \text{H}_2\text{C}-\text{CCI}-\text{CH}_2\text{Cl} \]  
see section XII  
MAK[ml/m³]: –  
MAK[mg/m³]: –  
Peak lim: –  
Preg gr: –  
Perc abs: H  
Carc cat: 2

**Chloropicrin**  
[76-06-2]  
\[ \text{Cl}_2\text{CNO}_2 \]  

VP[hPa]: 25  
MAK[ml/m³]: 0.1  
MAK[mg/m³]: 0.68  
Peak lim: I(1)

**Chlorofluorocarbons**  
[124-75-3]  
\[ \text{CHCl}_3 \]  

VP[hPa]: 267  
MAK[ml/m³]: –  
MAK[mg/m³]: –  
Peak lim: –  
Preg gr: –  
Perc abs: H  
Carc cat: 2

**Chloroform**  
[67-66-3]  
\[ \text{CHCl}_3 \]  

VP[hPa]: 100  
MAK[ml/m³]: –  
MAK[mg/m³]: –  
Peak lim: –  
Preg gr: –  
Perc abs: H  
Carc cat: 2
1-Chloro-4-(trichloromethyl)benzene → p-Chlorobenzotrichloride

2-Chloro-1,1,2-trifluoroethyl difluoromethyl ether → Enflurane

**Chlorotrifluoromethane (FC-13)**

\[\text{[75-72-9]}\]

- MAK\(\text{[ml/m}^3\text{]}\): 1000
- MAK\(\text{[mg/m}^3\text{]}\): 4300
- Peak lim: II(8)
- Preg gr: D

Chlorpromazine (2-Chloro-10-(3-dimethylaminopropyl)phenothiazine)

\[\text{[50-53-3]}\]

see section IV

Sens: SP

Chrome yellow → Lead chromate

**Chromium carbonyl**

\[\text{[13007-92-6]}\]

see section IIb

- MAK\(\text{[ml/m}^3\text{]}\): –
- MAK\(\text{[mg/m}^3\text{]}\): –
- Peak lim: –
- Preg gr: –

**Chromium(III) compounds**

see section IIb and XII

- MAK\(\text{[ml/m}^3\text{]}\): –
- MAK\(\text{[mg/m}^3\text{]}\): –
- Peak lim: –
- Preg gr: –
- Sens: Sh

...does not apply for chromium(III) oxide and similar poorly soluble chromium(III) compounds

**Chromium(VI) compounds**

(inhalable fraction)

see section XII

- MAK\(\text{[ml/m}^3\text{]}\): –
- MAK\(\text{[mg/m}^3\text{]}\): –
- Peak lim: –
- Preg gr: –
- Perc abs: H

the chromates of barium, lead, strontium and zinc are not designated with “H”

Sens: Sh

barium chromate and lead chromate are not designated with “Sh”

Carc cat: 1

Muta cat: 2

**Chrysene**

\[\text{[218-01-9]}\]

see Section III, “pyrolysis products of organic materials”

- MAK\(\text{[ml/m}^3\text{]}\): –
- MAK\(\text{[mg/m}^3\text{]}\): –
- Peak lim: –
- Preg gr: –
- Perc abs: H
- Carc cat: 2

Chrysotile (fibrous dust) → Asbestos

Chymotrypsin → Trypsin and Chymotrypsin

**Cinnamaldehyde**

\[\text{[104-55-2]}\]

The substance can occur simultaneously as vapour and aerosol.

**Cinnamic alcohol**

→ Cinnamyl alcohol

Cinnamic aldehyde → Cinnamaldehyde

**Cinnamyl alcohol**

\[\text{[104-54-1]}\]

The substance can occur simultaneously as vapour and aerosol.

**Carc cat:** 2
**Muta cat:** 2

**C.I. Pigment Red 104 → Lead chromate**

**C.I. Pigment Yellow 34 → Lead chromate**

**Citrates → Citric acid**

**Citric acid**

\[\text{[77-92-9]}\]

see section Xc

- MAK\(\text{[mg/m}^3\text{]}\): 2 I
- Peak lim: I(2)
- Preg gr: C

**Citric acid alkali metal salts**

see section IIb and Xc

- MAK\(\text{[ml/m}^3\text{]}\): –
- MAK\(\text{[mg/m}^3\text{]}\): –

The MAK value for citric acid (2 mg/m\(^3\)) protects from irritation, a higher value for alkali metal salts is not justifiable.

- Peak lim: –
- Preg gr: –
Coal mine dust (respirable fraction)

- MAK[ml/m³]: –
- MAK[mg/m³]: –
- Peak lim: –
- Preg gr: –
- Carc cat: 3

Coal tars, coal tar pitches, coal tar oils
→ Pyrolysis products of organic materials

Cobalt
[7440-48-4]
and cobalt compounds (inhalable fraction)
see section XII

- MAK[ml/m³]: –
- MAK[mg/m³]: –
- Peak lim: –
- Preg gr: –
- Perc abs: H
- Sens: Sah
- Carc cat: 2
- MutA cat: 3A

  - Cobalt(II) carbonate
    [513-79-1] CoCO₃

  - Cobalt(II) oxide
    [1307-96-6] CoO

  - Cobalt(II,III) oxide
    [1308-06-1] Co₃O₄

  - Cobalt(II) sulfate·7 H₂O
    [10026-24-1] CoSO₄·7H₂O

  - Cobalt(II) sulfide
    [1317-42-6] CoS

Cobalt alloys
Sens: –
For cobalt alloys containing bio-available cobalt see Cobalt and cobalt compounds.

Cobalt alloys → Hard metal containing tungsten carbide and cobalt

Cocobolo (Dalbergia retusa) → Woods

Coconut oil
[8001-31-8]
see section Xc

- MAK[mg/m³]: 5 R
- Peak lim: II(4)
- Preg gr: C

Cocus wood (Brya ebenus) → Woods

Coke oven emissions → Pyrolysis products of organic materials

Colophony → Rosin (colophony)

Copper
[7440-50-8] Cu
and its inorganic compounds

- MAK[ml/m³]: –
- MAK[mg/m³]: 0.01 R
- Peak lim: II(2)
- Preg gr: C

Corona oil → Coconut oil

Coromandel (Diospyros celebica) → Woods

Corundum → α-Aluminium oxide

Cotton dust
applies only to raw cotton
see section V

- MAK[ml/m³]: 1.5 I
- MAK[mg/m³]: 4.5
- Peak lim: I(1)
- Preg gr: C
- Perc abs: H

  - o-Cresol
    [95-48-7]

  - m-Cresol

  - p-Cresol
    [106-44-5]

Cresol (all isomers)
[1319-77-3]
see section XII

- MAK[ml/m³]: 1
- MAK[mg/m³]: 4.5
- Peak lim: I(1)
- Preg gr: C
- Perc abs: H

Sens: Sh
Carc cat: 3

Cristobalite → Silica, crystalline

Crocidolite (fibrous dust) → Asbestos
Crotonaldehyde
[123-73-9; 4170-30-3]
\[ \text{CH}_3\text{C}=\text{C} \text{O} \]

VP[hPa]: 25
MAK[ml/m³]: –
MAK[mg/m³]: –
Peak lim: –
Preg gr: –
Perc abs: H
Carc cat: 3
Muta cat: 3A

Cu-HDO
→ N-Cyclohexylhydroxy-diazen-1-oxide, copper salt

Cumene → iso-Propyl benzene (cumene)

Cumene hydroperoxide → α,α-Dimethylbenzyl hydroperoxide

Cyanamide
[420-04-2]
The substance can occur simultaneously as vapour and aerosol.

\[ \text{H}_2\text{N-CN} \]

VP[hPa]: 0.005
MAK[ml/m³]: 0.2
MAK[mg/m³]: 0.35
Peak lim: II(1)
Preg gr: C
Perc abs: H
Sens: Sh

Cyanides
(as CN)

\[ \text{MAK}[\text{mg/m}^3]: \ 2 \ I \]
Peak lim: II(1)
Preg gr: C
Perc abs: H

2-Cyanoacrylic acid methyl ester → Methyl 2-cyanoacrylate

2-Cyano-2,2-dibromoacetamide
→ 2,2-Dibromo-2-cyanacetamide

Cyano(4-fluoro-3-phenoxyphenyl) methyl-3-(2,2-dichloroethenyl)-2,2-dimethylcyclopropane carboxylate → Cyfluthrin

Cyanogen
[460-19-5]
\[ \text{NC-CN} \]

\[ \text{MAK}[\text{ml/m}^3]: \ 5 \]
MAK[mg/m³]: 11
Peak lim: II(2)
Preg gr: D
Perc abs: H

Cyanogen chloride
[506-77-4]
\[ \text{CNCl} \]
see section IIb

\[ \text{MAK}[\text{ml/m}^3]: \ 0.001 \]
MAK[mg/m³]: 0.0076
Peak lim: I(2)
Preg gr: C
Sens: Sh

Cyanoguanidine → Dicyanodiamide

Cyanuric chloride
[108-77-0]
The substance can occur simultaneously as vapour and aerosol.

\[ \text{MAK}[\text{ml/m}^3]: \ 0.001 \]
MAK[mg/m³]: 0.0076
Peak lim: I(2)
Preg gr: C
Sens: Sh

Cyclohexane
[110-82-7]

\[ \text{VP}[\text{hPa}]: \ 104 \]
see section XII

\[ \text{MAK}[\text{ml/m}^3]: \ 200 \]
MAK[mg/m³]: 700
Peak lim: II(4)
Preg gr: D

Cyclohexanol
[108-93-0]
see section IIb

\[ \text{MAK}[\text{ml/m}^3]: \ – \]
MAK[mg/m³]: –
Peak lim: –
Preg gr: –
Perc abs: H

Cyclohexanone
[108-94-1]

\[ \text{VP}[\text{hPa}]: \ 5 \]
see section XII

\[ \text{MAK}[\text{ml/m}^3]: \ – \]
MAK[mg/m³]: –
Peak lim: –
Preg gr: –
Perc abs: H
Carc cat: 3

Cyclohexanone peroxide
→ 1-Hydroxy-1'-hydroperoxydicyclohexyl peroxide
Cyclohexene
[110-83-8]

see section IIb

MAK[ml/m³]: –
MAK[mg/m³]: –
Peak lim: –
Preg gr: –

Cyclohexylamine
[108-91-8]

MAK[ml/m³]: 2
MAK[mg/m³]: 8.2
Peak lim: I(2)
A momentary value of 5 ml/m³ (21 mg/m³) should not be exceeded.
Preg gr: C

N-Cyclohexyl-2-benzothiazolesulfenamide
[95-33-0]

see section IV
Sens: Sh

Cyclohexylhydroxydiazene-1-oxide, copper salt
[66603-10-9]

see section Xc
MAK[mg/m³]: 0.01 R
Peak lim: I(1)
Preg gr: C

Cyfluthrin
[68359-37-5]

MAK[mg/m³]: 0.01 I
Peak lim: I(1)
Preg gr: C

β-Cyfluthrin → Cyfluthrin

2,4-D → 2,4-Dichlorophenoxyacetic acid
Dalapon → 2,2-Dichloropropionic acid
Dalbergia spp. → Woods

Dawsonite
[12011-76-6]

see section III

MAK[mg/m³]: –
Peak lim: –
Preg gr: –
Carc cat: 2
Muta cat: 3B

DDT (Dichlorodiphenyltrichloroethane)
[50-29-3]

MAK[mg/m³]: 1 I
Peak lim: II(8)
Preg abs: H

DDVP → Dichlorvos

Cyclopentadiene
[542-92-7]

VP[hPa]: 451
see section IIb

MAK[ml/m³]: –
MAK[mg/m³]: –
Peak lim: –
Preg gr: –

Cyclopenta(cd)pyrene
[27208-37-3]

see Section III, “pyrolysis products of organic materials”

MAK[ml/m³]: –
MAK[mg/m³]: –
Peak lim: –
Preg gr: –
Perc abs: H
Carc cat: 2
Muta cat: 3B
Decaborane
[17702-41-9]  \( \text{B}_{10}\text{H}_{14} \)

- \( \text{MAK}[\text{ml/m}^3] \): 0.05
- \( \text{MAK}[\text{mg/m}^3] \): 0.25
- Peak lim: II(2)
- Perc abs: H

Decachlorotetracyclodecanone → Chlordecone

Decahydronaphthalene
[91-17-8]
The substance can occur simultaneously as vapour and aerosol.

- \( \text{VP}[\text{hPa}] \): 3.07
- \( \text{MAK}[\text{ml/m}^3] \): 5
- \( \text{MAK}[\text{mg/m}^3] \): 29
- Peak lim: II(2)
- Perc gr: D

Decalin → Decahydronaphthalene

1,10-Decanedioic acid → Sebacic acid

Decyl alcohol
[112-30-1]
The substance can occur simultaneously as vapour and aerosol.

- \( \text{H}_3\text{C}(\text{CH}_2)\text{OH} \)
- see section Xc
- \( \text{MAK}[\text{ml/m}^3] \): 10
- \( \text{MAK}[\text{mg/m}^3] \): 66
- Peak lim: I(1)
- Perc gr: D

Decyl 9-octadecenoate → n-Decyl oleate

n-Decyl oleate
[3687-46-5]  \( \text{CH}_2(\text{CH}_2)\text{COO}(\text{CH}_2)\text{CH}_3 \)

- see section Xc
- \( \text{MAK}[\text{ml/m}^3] \): –
- \( \text{MAK}[\text{mg/m}^3] \): 5 R
- Peak lim: II(4)
- Perc gr: D

Demeton
[8065-48-3]
see Section XII, List of BAT Values, Acetylcholinesterase inhibitors

- see section IIb
- \( \text{MAK}[\text{ml/m}^3] \): –
- \( \text{MAK}[\text{mg/m}^3] \): –
- Peak lim: –
- Perc gr: –

Demeton-methyl
[8022-00-2]
\( \text{SP}(\text{OCH}_3)_2 \)
\( \text{O}([\text{CH}_2]_3\text{S}-\text{CH}_2\text{CH}_3) + \)
\( \text{OP}(\text{OCH}_3)_2 \)
\( \text{S}([\text{CH}_2]_3\text{S}-\text{CH}_2\text{CH}_3) \)

- \( \text{MAK}[\text{ml/m}^3] \): 0.5
- \( \text{MAK}[\text{mg/m}^3] \): 4.8
- Peak lim: II(2)
- Perc abs: H

Desflurane
[57041-67-5]
\( \text{CF}_3\text{CHF-O-CHF}_2 \)
see section IIb

- \( \text{MAK}[\text{ml/m}^3] \): –
- \( \text{MAK}[\text{mg/m}^3] \): –
- Peak lim: –
- Perc gr: –

Diacetone alcohol
[123-42-2]

- \( \text{MAK}[\text{ml/m}^3] \): 20
- \( \text{MAK}[\text{mg/m}^3] \): 96
- Peak lim: I(1)
- Perc gr: D
- Perc abs: H

Diacetyldiethylperoxide
[110-22-5]
\( \text{H}_3\text{C}-\text{CO-OC-CH}_3 \)
see section Xa

Diallyl phthalate
[131-17-9]

see section IIb

- \( \text{MAK}[\text{ml/m}^3] \): –
- \( \text{MAK}[\text{mg/m}^3] \): –
- Peak lim: –
- Perc gr: –
2,4-Diaminoanisole  
[615-05-4]
The substance can occur simultaneously as vapour and aerosol.

VP(hPa): 0.063 (calculated value)

MAK[ml/m³]: –
MAK[mg/m³]: –
Peak lim: –
Preg gr: –
Perc abs: H
Carc cat: 2

1,2-Diaminobenzene → o-Phenylenediamine
1,3-Diaminobenzene → m-Phenylenediamine
1,4-Diaminobenzene → p-Phenylenediamine

3,3’-Diaminobenzidine and its tetrahydrochloride  
[91-95-2; 7411-49-6]

MAK[ml/m³]: –
MAK[mg/m³]: –
Peak lim: –
Preg gr: –
Carc cat: 3

4,4’-Diamo-3,3’-dichlorodiphenylmethane → 4,4’-Methylene-bis(2-chloroaniline)  
(MOCA)
2,2’-Diaminodiethylamine → Diethylenetriamine
4,4’-Diaminodiphenyl → Benzidine

4,4’-Diaminodiphenylmethane  
[101-77-9]

see section XII

MAK[ml/m³]: –
MAK[mg/m³]: –
Peak lim: –
Preg gr: –
Perc abs: H
Sens: Sh
Carc cat: 2

4,4’-Diaminodiphenyl sulfide → 4,4’-Thiodianiline
1,2-Diaminoethane → Ethylenediamine
3,8-Diamino-5-ethyl-6-phenylphenanthridinium bromide → Ethidium bromide

1,5-Diaminonaphthalene  
[2243-62-1]

\[
\text{NH}_2
\]

MAK[ml/m³]: –
MAK[mg/m³]: –
Peak lim: –
Preg gr: –
Perc abs: H
Sens: Sh
Carc cat: 2

o-Dianisidine → 3,3’-Dimethoxybenzidine
Diatomaceous earth → Silica, amorphous a) colloidal amorphous silica [7631-86-9] including pyrogenic [112945-52-5] and wet process silica [7631-86-9] and diatomaceous earth (uncalcined) [61790-53-2]
Diazenedicarboxamide → Azodicarbonamide

Diazinon  
[333-41-5]

\[
\text{CH}_3
\]

MAK[mg/m³]: 0.1 I
Peak lim: II(2)
Preg gr: C
Perc abs: H

Diazomethane  
[334-88-3]

\[
\text{H}_2\text{C} \overset{\ominus}{\text{N}}=\text{N} \rightarrow \text{H}_2\text{C} \overset{\ominus}{\text{N}}=\text{N}
\]

Dibenzo[a,h]anthracene  
[53-70-3]

see Section III, “pyrolysis products of organic materials”

MAK[ml/m³]: –
MAK[mg/m³]: –
Peak lim: –
Preg gr: –
Perc abs: H
Carc cat: 2
Mutat cat: 3A
Dibenzo[a,e]pyrene  
[192-65-4]  

see Section III, “pyrolysis products of organic materials”  
MAK[ml/m³]: –  
MAK[mg/m³]: –  
Peak lim: –  
Preg gr: –  
Perc abs: H  
Carc cat: 2  
Muta cat: 3B

Dibenzo[a,h]pyrene  
[189-64-0]  

see Section III, “pyrolysis products of organic materials”  
MAK[ml/m³]: –  
MAK[mg/m³]: –  
Peak lim: –  
Preg gr: –  
Perc abs: H  
Carc cat: 2  
Muta cat: 3B

Dibenzo[a,i]pyrene  
[189-55-9]  

see Section III, “pyrolysis products of organic materials”  
MAK[ml/m³]: –  
MAK[mg/m³]: –  
Peak lim: –  
Preg gr: –  
Perc abs: H  
Carc cat: 2  
Muta cat: 3B

Dibenzo[a,l]pyrene  
[191-30-0]  

Dibenzo-1,4-thiazine → Phenothiazine

2,2’-Dibenzothiazyl disulfide  
[120-78-5]  

see section IV  
Sens: Sh

Dibenzyl disulfide  
[150-60-7]  

see section IIb and Xc  
MAK[ml/m³]: –  
MAK[mg/m³]: –  
Peak lim: –  
Preg gr: –  

1,2-Dibromo-3-chloropropane  
[96-12-8]  

MAK[ml/m³]: –  
MAK[mg/m³]: –  
Peak lim: –  
Preg gr: –  
Perc abs: H  
Carc cat: 2  
Muta cat: 2

2,2-Dibromo-2-cyanacetamide  
[10222-01-2]  

Sens: Sh

1,2-Dibromo-2,4-dicyanobutane  
[35691-65-7]  

Sens: Sh
Dibromodifluoromethane
[75-61-6] \( \text{CB}_2\text{F}_2 \)

see section IIb

MAK\[ml/m^3\]: –
MAK\[mg/m^3\]: –
Peak lim: –
Preg gr: –

1,2-Dibromoethane
[106-93-4] \( \text{BrH}_2\text{CH-CH}_3\text{Br} \)

VP\[hPa\]: 15

MAK\[ml/m^3\]: –
MAK\[mg/m^3\]: –
Peak lim: –
Preg gr: –
Perc abs: H
Carc cat: 2

Dibromohydroxymercurifluorescein disodium → Merbromin

Dibutyl phosphate → Di-n-butyl phosphonate

2,6-Di-tert-butyl-p-cresol (3,5-Di-tert-butyl-4-hydroxytoluene) (BHT)
[128-37-0]
The substance can occur simultaneously as vapour and aerosol.

\[
\begin{align*}
\text{HO-} & \text{C(CH}_3\text{)}_3
\end{align*}
\]

VP\[hPa\]: 3.9×10⁻³ at 25°C

see section Xc

MAK\[mg/m^3\]: 10 I
Peak lim: II(4)
Preg gr: C
Carc cat: 4

3,5-Di-tert-butyl-4-hydroxyphenyl propionic acid octadecyl ester
[2082-79-3]

\[
\begin{align*}
\text{HO-} & \text{C(CH}_3\text{)}_3
\end{align*}
\]

VP\[hPa\]: 2.5×10⁻⁹

see section Xc

MAK\[mg/m^3\]: 20 I
Peak lim: II(2)
Preg gr: C

3,5-Di-tert-butyl-4-hydroxytoluene
→ 2,6-Di-tert-butyl-p-cresol (3,5-Di-tert-butyl-4-hydroxytoluene) (BHT)

N,N-Di-n-butylnitrosoamine
→ N-Nitrosodi-n-butylamine

Di-tert-butyl peroxide
[110-05-4]

\[
\begin{align*}
\text{HO-} & \text{C(CH}_3\text{)}_3 \text{C-O-C(CH}_3\text{)}_3
\end{align*}
\]

see section Xa

2,6-Di-tert-butylphenol
[128-39-2]

see section IIb and Xc

MAK\[ml/m^3\]: –
MAK\[mg/m^3\]: –
Peak lim: –
Preg gr: –

Di-n-butyl phosphate
[107-66-4]

\[
\begin{align*}
\text{HO-} & \text{P(O-(CH}_3\text{)}_2\text{CH}_2
\end{align*}
\]

and its technical mixtures

VP\[hPa\]: 7.4×10⁻⁵

see section Xc

MAK\[ml/m^3\]: –
MAK\[mg/m^3\]: –
Peak lim: –
Preg gr: –
Carc cat: 3

Di-n-butyl phosphonate
[1809-19-4]

see also Di-n-octyl phosphonate

The substance can occur simultaneously as vapour and aerosol.

\[
\begin{align*}
\text{CH}_3\text{(CH}_2\text{)}_2\text{O-P-O-(CH}_3\text{)}_3\text{CH}_2
\end{align*}
\]

VP\[hPa\]: 3.2×10⁻⁷ at 25°C (calculated value)

see section IIb and Xc

MAK\[ml/m^3\]: –
MAK\[mg/m^3\]: –
Peak lim: –
Preg gr: –
Di-n-butyl phthalate
[84-74-2]
The substance can occur simultaneously as vapour and aerosol.

\[
\text{VP[hPa]}: 1.6 \times 10^{-4}
\]
see section Xc

MAK[ml/m³]: 0.05
MAK[mg/m³]: 0.58
Peak lim: I(2)
Preg gr: C
Carc cat: 3

Dicarbamoyldiimide → Azodicarbonamide

Dicarboxylic acid anhydrides
see section IVe

Dicarboxylic acid (C4-C6) dimethylester, mixture
[95481-62-2]

MAK[ml/m³]: 0.75
MAK[mg/m³]: 5
Peak lim: I(1)
Preg gr: C

Dichloroacetic acid
[79-43-6]
and its salts
The substance can occur simultaneously as vapour and aerosol.

\[
\text{HOOC-CHCl}_2
\]

\[
\text{VP[hPa]}: 0.19
\]
MAK[ml/m³]: 0.2
MAK[mg/m³]: 1.1
salts: 1.1 mg/m³ as acid
Peak lim: I(1)
Preg gr: D
Perc abs: H
Designation with an H does not apply for the acid
Carc cat: 4

Dichloroacetylene
[7572-29-4]

\[
\text{CIC} = \text{CCl}
\]

MAK[ml/m³]: –
MAK[mg/m³]: –
Peak lim: –
Preg gr: –
Carc cat: 2

3,4-Dichloroaniline
[95-76-1]
The substance can occur simultaneously as vapour and aerosol.

\[
\text{VP[hPa]}: 1.84 \times 10^{-3}
\]
see section IIb

MAK[ml/m³]: –
MAK[mg/m³]: –
Peak lim: –
Preg gr: –
Perc abs: H
Sens: Sh

3,4-Dichlorobenzenamine
→ 3,4-Dichloroaniline

1,2-Dichlorobenzene
[95-50-1]

\[
\text{VP[hPa]}: 1.33
\]
see section XII

MAK[ml/m³]: 10
MAK[mg/m³]: 61
Peak lim: II(2)
Preg gr: C
classification in Pregnancy Risk Group C was re-evaluated in 2011 and confirmed
Perc abs: H

1,3-Dichlorobenzene
[541-73-1]

\[
\text{MAK[ml/m³]}: 2
\]
MAK[mg/m³]: 12
Peak lim: II(2)
Preg gr: C
classification in Pregnancy Risk Group C was re-evaluated in 2011 and confirmed

1,4-Dichlorobenzene
[106-46-7]

\[
\text{VP[hPa]}: 2.3 \text{ at } 25°C
\]
see section XII

MAK[ml/m³]: 2
MAK[mg/m³]: 12
Peak lim: II(2)
Preg gr: C
Perc abs: H
Carc cat: 4
3,3′-Dichlorobenzidine
[91-94-1]

\[
\begin{align*}
\text{HCl} & \quad \text{HCl} \\
\text{N} & \quad \text{N}
\end{align*}
\]

- MAK[ml/m³]: –
- MAK[mg/m³]: –
- Peak lim: –
- Preg gr: –
- Perc abs: H
- Carc cat: 2

1,4-Dichloro-2-butene
[764-41-0]

\[
\text{ClCH}_2\text{-CH-CH}_2\text{Cl}
\]

- MAK[ml/m³]: –
- MAK[mg/m³]: –
- Peak lim: –
- Preg gr: –
- Perc abs: H
- Carc cat: –

2,2′-Dichlorodiethyl ether
[111-44-4]

\[
\text{ClCH}_2\text{-CH}_2\text{-O-CH}_2\text{-CH}_2\text{Cl}
\]

- MAK[ml/m³]: 10
- MAK[mg/m³]: 59
- Peak lim: I(1)
- Preg gr: –
- Perc abs: H

Dichlorodifluoromethane (FC-12)
[75-71-8]

\[
\text{CCl}_2\text{F}_2
\]

- MAK[ml/m³]: 1000
- MAK[mg/m³]: 5000
- Peak lim: II(2)
- Preg gr: C

1,1-Dichloroethene
[75-34-3]

\[
\text{H}_2\text{C-CHCl}_2
\]

- VP[hPa]: 240
- MAK[ml/m³]: 50
- MAK[mg/m³]: 210
- Peak lim: II(2)
- Preg gr: C
- Perc abs: H
- Carc cat: 3

1,2-Dichloroethane
[107-06-2]

\[
\text{ClH}_2\text{-C-CH}_2\text{Cl}
\]

- VP[hPa]: 87
- MAK[ml/m³]: –
- MAK[mg/m³]: –
- Peak lim: –
- Preg gr: –
- Perc abs: H
- Carc cat: 2

1,2-Dichloroethene \rightarrow 1,2-Dichloroethylene sym

1,1-Dichloroethylene \rightarrow Vinylidene chloride

1,2-Dichloroethylene sym
[540-59-0]

\[
\begin{align*}
\text{Cl} & \quad \text{Cl} \\
\text{H} & \quad \text{H} \\
\text{H} & \quad \text{H} \\
\text{Cl} & \quad \text{Cl}
\end{align*}
\]

- VP[hPa]: 220
- MAK[ml/m³]: 200
- MAK[mg/m³]: 800
- Peak lim: II(2)

1,2-Dichloroethyl methyl ether
\rightarrow 1,2-Dichloromethoxyethane

Di-(2-chloroethyl)sulfide \rightarrow Bis(ß-chloroethyl) sulfide (mustard gas)

2,2′-Dichloroethyl sulfide \rightarrow Bis(ß-chloroethyl) sulfide (mustard gas)

Dichlorofluoromethane (FC-21)
[75-43-4]

\[
\text{CHCl}_2\text{F}
\]

- MAK[ml/m³]: 10
- MAK[mg/m³]: 43
- Peak lim: II(2)

Dichlorohydrin \rightarrow 1,3-Dichloro-2-propanol

Dichloromethane
[75-09-2]

\[
\text{CH}_2\text{Cl}_2
\]

- VP[hPa]: 475
- see section XII

Dichloronaphthalenes
→ Chlorinated naphthalenes

1,2-Dichloromethoxyethane
[41683-62-9]

\[
\text{H}_2\text{CCl-CHCl-OCH}_3
\]

- MAK[ml/m³]: –
- MAK[mg/m³]: –
- Peak lim: –
- Preg gr: –
- Perc abs: H
- Carc cat: 3

2,2′-Dichloro-N-methylidethylamine
\rightarrow N-Methyl-bis(2-chloroethyl)amine (nitrogen mustard)

2,2′-Dichloro-4,4′-methylene dianiline
\rightarrow 4,4′-Methylene-bis(2-chloroaniline) (MOCA)

Dichloronaphthalenes \rightarrow Chlorinated naphthalenes
3,4-Dichloronitrobenzene
[99-54-7]
The substance can occur simultaneously as vapour and aerosol.

\[
\text{O}_2\text{N}-\begin{array}{c} \text{Cl} \\ \text{Cl} \end{array}
\]

VP[hPa]: 0.02 at 25°C
MAK[mL/m³]: –
MAK[mg/m³]: –
Peak lim: –
Preg gr: –
Perc abs: H
Carc cat: 3

1,1-Dichloro-1-nitroethane
[594-72-9] \( \text{H}_3\text{C-CCl}_2\text{NO}_2 \)
see section IIb
MAK[mL/m³]: –
MAK[mg/m³]: –
Peak lim: –
Preg gr: –

2,4-Dichlorophenoxyacetic acid
[94-75-7]
(including salts and esters)
MAK[mg/m³]: 2 I
Peak lim: II(2)
Preg gr: C
Perc abs: H

4-(2,4-Dichlorophenoxy)benzenamine
[14861-17-7]
MAK[mL/m³]: –
MAK[mg/m³]: –
Peak lim: –
Preg gr: –
Perc abs: H
Carc cat: 3

★ 1,2-Dichloropropane
[78-87-5] \( \text{H}_3\text{C-CHCl-CH}_2\text{Cl} \)
VP[hPa]: 66.2 at 25°C
see section XII
MAK[mL/m³]: –
MAK[mg/m³]: –
Peak lim: –
Preg gr: –
Perc abs: H
Carc cat: 1

1,3-Dichloro-2-propanol
[96-23-1] \( \text{ClH}_2\text{C-CH}_2\text{OH-CH}_2\text{Cl} \)
MAK[mL/m³]: –
MAK[mg/m³]: –
Peak lim: –
Preg gr: –
Perc abs: H
Carc cat: 2

1,3-Dichloropropene
(cis and trans)
[542-75-6]
\[
\begin{array}{c} \text{Cl} \\ \text{CH}_2\text{Cl} \\ \text{Cl} \end{array}
\]
VP[hPa]: 40
MAK[mL/m³]: –
MAK[mg/m³]: –
Peak lim: –
Preg gr: –
Perc abs: H
Sens: Sh
Carc cat: 2

2,2-Dichloropropionic acid
[75-99-0] \( \text{H}_3\text{C-CCl}_2\text{COOH} \)
see section IIb
MAK[mL/m³]: –
MAK[mg/m³]: –
Peak lim: –
Preg gr: –

2,2-Dichloropropionic acid, sodium salt
[127-20-8] \( \text{H}_3\text{C-CCl}_2\text{COO}^- \text{Na}^+ \)
see section IIb
MAK[mL/m³]: –
MAK[mg/m³]: –
Peak lim: –
Preg gr: –

1,2-Dichloro-1,1,2,2-tetrafluoroethane (FC-114)
[76-14-2] \( \text{ClF}_2\text{C-CCl}_2 \)
MAK[mL/m³]: 1000
MAK[mg/m³]: 7100
Peak lim: II(8)
Preg gr: D

\( \alpha,\alpha\)-Dichlorotoluene \rightarrow \text{Benzyl dichloride} 

2,2-Dichloro-1,1,1-trifluoroethane (FC-123)
[306-83-2] \( \text{F}_2\text{C-CHCl}_2 \)
VP[hPa]: 13.2
Peak lim: –
Preg gr: –
Carc cat: 3

Dichlorvos
[62-73-7] \( \text{Cl}_2\text{C-CH-O-PO(OCH}_3\text{)}_2 \)
MAK[mL/m³]: 0.11
MAK[mg/m³]: 1
Peak lim: II(2)
Preg gr: C
classification in Pregnancy Risk Group C was re-evaluated in 2011 and confirmed
Perc abs: H
Dicyanodiamide
[461-58-5]

VP[hPa]: $2.3 \times 10^{-3}$
see section IIb
MAK[ml/m³]: –
MAK[mg/m³]: –
Peak lim: –
Preg gr: –

1,3-Dicyanotetrachlorobenzene → Chlorothalonil

Dicyclohexylamine
[101-83-7]
The substance can occur simultaneously as vapour and aerosol. Reaction with nitrosating agents can result in the formation of carcinogenic N-nitrosodicyclohexylamine, see Section III “Amines which form carcinogenic nitrosamines on nitrosation”.

VP[hPa]: 0.04 at 25°C
see section IIb
MAK[ml/m³]: –
MAK[mg/m³]: –
Peak lim: –
Preg gr: –
Perc abs: H

Dicyclohexylamine nitrite
[3129-91-7]
see section IIb
MAK[ml/m³]: –
MAK[mg/m³]: –
Peak lim: –
Preg gr: –

Dicyclohexylcarbodiimide
[538-75-0]
see section IV
Sens: Sh

Dicyclohexyl methane 4,4ʹ-diisocyanate
[5124-30-1]
see section IV
Sens: Sh

Dicyclohexyl peroxide
[1758-61-8]
see section Xa

Dicyclopentadiene
[77-73-6]

MAK[ml/m³]: 0.5
MAK[mg/m³]: 2.7
Peak lim: I(1)
Preg gr: D

Di(tert-dodecyl)pentasulfide and Di(tert-dodecyl)polysulfide
[31565-23-8; 68583-56-2; 68425-15-0]

see section Xc
MAK[mg/m³]: 5 R
Peak lim: II(4)
Preg gr: C

Dieldrin
[60-57-1]

MAK[mg/m³]: 0.25 I
Peak lim: II(8)
Perc abs: H

Diepoxybutane
[1464-53-5]

Muta cat: 2

Diesel engine emissions
Because of the new diesel engine technology the emissions have changed significantly in quality and quantity. Since it must be assumed that these new diesel engines were introduced at the end of the 1990s, all the available epidemiological studies which were evaluated in 2007 are based on exposures to emissions from older diesel engines. The emissions from the new diesel engines can not be evaluated until appropriate studies become available.

see Section III, “pyrolysis products of organic materials”

MAK[ml/m³]: –
MAK[mg/m³]: –
Peak lim: –
Preg gr: –
Perc abs: H

Diethanolamine
[111-42-2]
The substance can occur simultaneously as vapour and aerosol. Reaction with nitrosating agents can result in the formation of carcinogenic N-nitrosodiethanolamine, see Section III “Amines which form carcinogenic nitrosamines on nitrosation”.

VP[hPa]: $2 \times 10^{-4}$

MAK[ml/m³]: 1 I
Peak lim: I(1)
Preg gr: C
Perc abs: H
Sens: Sh
Carc cat: 3

N,N-Diethanolnitrosoamine → N-Nitrosodiethanolamine
Diethylamine
[109-89-7]
Reaction with nitrosating agents can result in the formation of carcinogenic N-nitrosodiethylamine, see Section III “Amines which form carcinogenic nitrosamines on nitrosation”.

\[
\text{H}_2\text{C-CH}_3\text{NH}
\]
VP[hPa]: 253
MAK[ml/m³]: 2
MAK[mg/m³]: 6.1
Peak limit: I(2)
A momentary value of 5 ml/m³ (15 mg/m³) should not be exceeded.
Preg gr: D
Perc abs: H
2-Diethylaminoethanol
[100-37-8] \((\text{H}_2\text{C-CH}_3)_2\text{N-CH}_2\text{-CH}_2\text{OH}\)
VP[hPa]: 1.9
MAK[ml/m³]: 5
MAK[mg/m³]: 24
Peak limit: I(1)
Preg gr: C
Perc abs: H
Diethylbenzene
(all isomers)
– Diethylbenzene, Mixture [25340-17-4]
1,3-Diethylbenzene [141-93-5]
1,4-Diethylbenzene [105-05-5]

\[
\begin{array}{c}
\text{CH}_2\text{-CH}_3 \\
\text{CH}_2\text{-CH}_3
\end{array}
\]
MAK[ml/m³]: 5
When exposed to the mixture the MAK value for 1,2-diethylbenzene should be observed.
MAK[mg/m³]: 28
Peak limit: II(2)
Preg gr: C
Perc abs: H
– 1,2-Diethylbenzene
[135-01-3]

\[
\begin{array}{c}
\text{CH}_2\text{-CH}_3 \\
- \text{CH}_2\text{-CH}_3
\end{array}
\]
MAK[ml/m³]: 1
MAK[mg/m³]: 5.6
Peak limit: II(8)
Preg gr: C
Perc abs: H
Diethyldiethylcarbamoyl chloride
[88-10-8]
The substance can occur simultaneously as vapour and aerosol.

\[
\text{H}_2\text{C-CH}_3\text{N-CO-Cl}
\]
VP[hPa]: 0.96 at 25°C (calculated value)
MAK[ml/m³]: –
MAK[mg/m³]: –
Peak limit: –
Preg gr: –
Carc cat: 3
Diethyldithiocarbamate sodium → Sodium diethyldithiocarbamate

Diethylenediamine → 1,4-Dioxane
Diethylene glycol
[111-46-6]
The substance can occur simultaneously as vapour and aerosol.

\[
\text{HO-(CH}_2\text{)}_2\text{-O-(CH}_2\text{)}_2\text{-OH}
\]
VP[hPa]: 0.027
MAK[ml/m³]: 10
MAK[mg/m³]: 44
Peak limit: II(4)
Preg gr: C
classification in Pregnancy Risk Group C was re-evaluated in 2011 and confirmed
Diethylene glycol diacrylate
[4074-88-8] \((\text{CH}_2\text{-C}=\text{CH-})_2\text{COO-(CH}_2\text{)}_2\text{C}\)
see section IV
Sens: Sh
Diethylene glycol dimethacrylate
[2358-84-1] \((\text{CH}_2\text{-O-OC-(CH}_2\text{)}_2\text{CH}_2\text{)}_2\text{O-OC-(CH}_2\text{)}_2\text{-CH}_2\text{)}_2\text{OH}\)
see section IV
Sens: Sh
★ Diethylene glycol dimethyl ether
[111-96-6] \(\text{H}_2\text{C-O-[(CH}_2\text{)}_2\text{-O]}\text{-CH}_3\)
VP[hPa]: 0.6
MAK[ml/m³]: 1
MAK[mg/m³]: 5.56
Peak limit: II(8)
Preg gr: B
Perc abs: H
Diethylene glycol dinitrate
[693-21-0] \((\text{CH}_2\text{)}_2\text{-ONO}_{2}\text{)}_2\)
see section IIb
MAK[ml/m³]: –
MAK[mg/m³]: –
Peak limit: –
Preg gr: –
Perc abs: H
Diethylene glycol monobutyl ether
[112-34-5] The substance can occur simultaneously as vapour and aerosol.

\[
\text{CH}_3\text{-CH}_2\text{-O-(CH}_2\text{)}_2\text{-OH}
\]
VP[hPa]: 0.027
MAK[ml/m³]: 10
MAK value applies for the sum of the concentrations of diethylene glycol monobutyl ether and its acetate in the air.
MAK[mg/m³]: 67
Peak limit: I(1.5)
Preg gr: C
classification in Pregnancy Risk Group C was re-evaluated in 2011 and confirmed

Diethylene glycol diacrylate → Diethylene glycol dimethacrylate → Diethylene glycol dimethyl ether → Diethylene glycol dinitrate → Diethylene glycol monobutyl ether
Diethylene glycol monobutyl ether acetate
[124-17-4]
The substance can occur simultaneously as vapour and aerosol.

\[ \text{CH}_2\text{-C-O-}\text{(CH}_2\text{)}_2\text{-O}\text{(CH}_2\text{)}_2\text{-CH}_3 \]

VP[hPa]: 0.053

MAK[ml/m³]: 10

MAK value applies for the sum of the concentrations of diethylene glycol monobutyl ether and its acetate in the air.

MAK[mg/m³]: 85

Peak lim: I(1.5)

Preg gr: C

Diethylene glycol monoethyl ether
[111-90-0]
The substance can occur simultaneously as vapour and aerosol.

\[ \text{CH}_3\text{-C(OH)}_2\text{-CH}_2\text{OH} \]

VP[hPa]: 0.13

MAK[mg/m³]: 50 I

Peak lim: I(2)

Preg gr: C

Diethylenetriamine
[111-40-0]
\[(\text{H}_2\text{N-CH}_2\text{-CH}_2)_2\text{NH}\]

see section IV

Sens: Sh

Diethylenetriaminepentamethylene phosphonic acid
[15827-60-8]
\[\text{CH}_2\text{-PO}_3\text{H})_2\]

and its sodium salts [22042-96-2] \[\text{Na}((\text{CH}_2\text{-N(CH}_2\text{-PO}_3\text{H})_2)_2\]

see section Iib and Xc

MAK[ml/m³]: –

MAK[mg/m³]: –

Peak lim: –

Preg gr: –

Diethyl ether \(\rightarrow\) Ethyl ether

Di(2-ethylhexyl)phthalate (DEHP)
[117-81-7]

\[ \text{O} \]

VP[hPa]: 8.6×10⁻⁶

MAK[mg/m³]: 2 I

Peak lim: II(2)

Preg gr: C

Perc abs: H

Carc cat: 4

N,N-Diethylnitrosoamine
\(\rightarrow\) N-Nitrosodiethylamine

Diethyl sulfate
[64-67-5]
\[(\text{H}_2\text{C-CH}_2\text{-O})_2\text{SO}_2\]

MAK[ml/m³]: –

MAK[mg/m³]: –

Peak lim: –

Preg gr: –

Perc abs: H

Carc cat: 2

Muta cat: 2

Difluorodibromomethane
\(\rightarrow\) Dibromodifluoromethane

1,1-Difluoroethylene
[75-38-7]

H₂C=CF₂

MAK[ml/m³]: –

MAK[mg/m³]: –

Peak lim: –

Preg gr: –

Carc cat: 3

2-Difluoromethyl 1,2,2,2-tetrafluoroethyl ether
\(\rightarrow\) Desflurane

Diformyl \(\rightarrow\) Glyoxal

Diglycidyl ether (DGE)
[2238-07-5]
The substance can occur simultaneously as vapour and aerosol.

Di(2-ethylhexyl)phthalate \(\rightarrow\) Hexahydrophthalic acid diglycidylester

Diglycidyl hexahydrophthalate
\(\rightarrow\) Hexahydrophthalic acid diglycidylester

Diglycidyl hexanediol
[16096-31-4]

\[\text{O}\text{-CH}_2\text{-O-(CH}_2\text{)}_6\text{-O-CH}_2\text{-O}\]

see section IV

Sens: Sh

1,3-Diglycidyloxybenzene \(\rightarrow\) Diglycidyl resorcinol ether
Diglycidyl resorcinol ether
[101-90-6]

MAK [ml/m³]: –
MAK [mg/m³]: –
Peak lim: –
Preg gr: –
Perc abs: H
Sens: Sh
Carc cat: 2

Diglycolamine → 2-(2-Aminoethoxy)ethanol

Dihydro-2(3H)-furanone → γ-Butyrolactone

1,2-Dihydro-5-nitroacenaphthylene → 5-Nitroacenaphthene

1,2-Dihydro-2,2,4-trimethyl-quinoline polymer
[26780-96-1]

see section IIb and Xc

MAK [ml/m³]: –
MAK [mg/m³]: –
Peak lim: –
Preg gr: –

1,4-Dihydroxybenzene → Hydroquinone

4,4’-Dihydroxydiphenylpropane → Bisphenol A

1,2-Dihydroxyethane → Ethylene glycol

2,2’-Dihydroxyethyl ether → Diethylene glycol

1,2-Dihydroxypropane → Propylene glycol

4-(Diiodomethylsulfonyl)-toluene
[20018-09-1]

see section IIb and Xc

MAK [ml/m³]: –
MAK [mg/m³]: –
Peak lim: –
Preg gr: –

Diisobutyl ketone
[108-83-8]

see section IIb

MAK [ml/m³]: –
MAK [mg/m³]: –
Peak lim: –
Preg gr: –

Diisocyanates
see section IVe

Diisocyanates MDI, HDI, IPDI

4,4’-Diisocyanato-methylenedicyclohexane → Dicyclohexyl methane 4,4’-diisocyanate

Diisodecyl phthalate
[26761-40-0]

VP [hPa]: 3×10⁻⁷

see section Xc

Peak lim: –
Preg gr: –
Carc cat: 3

N,N-Diisopropyl nitrosamine

Diisotridecyl phthalate
[27253-26-5]

see section Xc

Carc cat: 3

Diketene
[674-82-8]

see documentation "Ketene"

2,3-Diketobutane → Diacetyl

Dilauroyl peroxide
[105-74-8]

see section Xa

3,3’-Dimethoxybenzidine
[119-90-4]

MAK [ml/m³]: –
MAK [mg/m³]: –
Peak lim: –
Preg gr: –
Perc abs: H
Carc cat: 2
2,5-Dimethoxy-4-chloroaniline

[6358-64-1]

\[
\begin{align*}
\text{H}_2\text{CO-Cl} & \quad \text{H}_2\text{CO-CH}_2\text{OCH}_3 \\
\text{Cl} & \quad \text{H}_2\text{NH}\end{align*}
\]

MAK[ml/m³]: –
MAK[mg/m³]: –
Peak lim: –
Preg gr: –
Perc abs: H
Carc cat: 3

Dimethoxymethane

[109-87-5] \text{H}_2\text{CO-CH}_2\text{OCH}_3

VP[hPa]: 440
MAK[ml/m³]: 500
MAK[mg/m³]: 1600
Peak lim: II(2)
Preg gr: C

N,N-Dimethyl acetamide

[127-19-5] \text{H}_2\text{C-CO-N(CH}_3\text{)}_2

see section XII

VP[hPa]: 1.3
MAK[ml/m³]: 5
MAK[mg/m³]: 18
Peak lim: II(2)
Preg gr: C
Perc abs: H

Dimethyl adipate

[627-93-0] \text{CH}_2\text{OOC-(CH}_3\text{)}_2\text{CO-CH}_3

see also dicarboxylic acid (C₄-C₆)
dimylester
see section IIb
MAK[ml/m³]: –
MAK[mg/m³]: –
Peak lim: –
Preg gr: –

Dimethylaniline

[124-40-3]

Reaction with nitrosating agents can result in the formation of carcinogenic N-nitrosodimethylaniline, see Section III “Amines which form carcinogenic nitrosamines on nitrosation”.

\[
\text{HN(CH}_3\text{)}_2
\]

MAK[ml/m³]: 2
MAK[mg/m³]: 3.7
Peak lim: I(2)
Preg gr: D

1,1-Dimethylaminoethane → tert-Butylamine

N,N’-(Dimethylamino)ethyl methacrylate

[2867-47-2]

Sens: Sh

Dimethylaminopropionitrile

[1738-25-6] (H₃C)₂N-CH₂-CH₂-CN

see section IIb
MAK[ml/m³]: –
MAK[mg/m³]: –
Peak lim: –
Preg gr: –

Dimethylaminosulfochloride

→ Dimethylsulfamoyl chloride

N,N-Dimethylaniline

[121-69-7]

\[
\begin{align*}
\text{H}_2\text{C} & \quad \text{N} \\
\text{CH}_2 & \quad \text{CH}_3
\end{align*}
\]

MAK[ml/m³]: 5
MAK[mg/m³]: 25
Peak lim: II(2)
Preg gr: D
Perc abs: H
Carc cat: 3

3,3’-Dimethylbenzidine

[119-93-7] \text{H}_2\text{N-C-C-NH}_2

MAK[ml/m³]: –
MAK[mg/m³]: –
Peak lim: –
Preg gr: –
Perc abs: H
Carc cat: 3

α,α-Dimethylbenzyl hydroperoxide

[80-15-9]
The substance can occur simultaneously as vapour and aerosol.

VP[hPa]: 4.4×10⁻³ at 25°C
see section Xa

2,2-Dimethylbutane → Hexane (all isomers except n-Hexane) and Methylcyclopentane

2,3-Dimethylbutane → Hexane (all isomers except n-Hexane) and Methylcyclopentane

Dimethyl butanedioate → Dimethyl succinate

1,3-Dimethylbutyl acetate → sec-Hexyl acetate

N-(1,3-Dimethylbutyl)-N’-phenyl-1,4-benzene-diamine → N-(1,3-Dimethylbutyl)-N’-phenyl-p-phenylenediamine
N-(1,3-Dimethylbutyl)-N’-phenyl-p-phenylenediamine

N\text{-}(\overset{3}{\text{N}}\overset{2}{\text{N}})\text{-phenyl-p-phenylene-
}

\text{nediamine}\quad[793-24-8]

\begin{align*}
\text{MAK}[\text{mg/m}^3]: \quad & 2 \text{ I} \\
\text{Peak lim}: \quad & \text{II}(2) \\
\text{Preg gr}: \quad & \text{C} \\
\text{Sens}: \quad & \text{Sh}
\end{align*}

\text{Dimethylcarbamoyl chloride}\quad[79-44-7]

\begin{align*}
\text{MAK}[\text{ml/m}^3]: \quad & – \\
\text{MAK}[\text{mg/m}^3]: \quad & – \\
\text{Peak lim}: \quad & – \\
\text{Preg gr}: \quad & – \\
\text{Perc abs}: \quad & \text{H} \\
\text{Carc cat}: \quad & 2
\end{align*}

\text{3,3’-Dimethyl-4,4’-diaminodiphenylmethane → 4,4’-Methylene-bis(2-methylaniline)}

\text{Dimethyl diketone → Diacetyl}

\text{Dimethyl ether → Diacetyl}

\text{Dimethyl ether}\quad[115-10-6]

\begin{align*}
\text{H}_2\text{C-O-CH}_3 \\
\text{VP}[\text{hPa}]: \quad & 5200 \\
\text{MAK}[\text{ml/m}^3]: \quad & 1000 \\
\text{MAK}[\text{mg/m}^3]: \quad & 1900 \\
\text{Peak lim}: \quad & \text{II}(8) \\
\text{Preg gr}: \quad & \text{D}
\end{align*}

\text{N,N-Dimethylthylethylamine}\quad[598-56-1]

\begin{align*}
\text{Reaction with nitrosating agents can result in the formation of carci-

\text{nogenic N-nitrosodimethylamine and N-nitrosomethylethylamine, see Section II “Amines which}

\text{form carcinogenic nitroamines on nitrosation”}}. \\
\text{H}_3\text{C-CH}_2\text{-N(CH}_3)_2
\end{align*}

\begin{align*}
\text{VP}[\text{hPa}]: \quad & 527-580 \\
\text{MAK}[\text{ml/m}^3]: \quad & 2 \\
\text{MAK}[\text{mg/m}^3]: \quad & 6.1 \\
\text{Peak lim}: \quad & \text{I}(2) \\
\text{Preg gr}: \quad & \text{D} \\
\text{A momentary value of 5 ml/m}^3\text{ (15 mg/m}^3\text{) should not be exceeded.}
\end{align*}

\begin{align*}
\text{4-(1,1-Dimethylethyl)-1,2-benzenediol → p-tert-Butylcatechol} \\
\text{2-(4-(1,1-Dimethylethyl)phenoxy) methyloxirane → p-tert-Butylphenyl glycidyl ether}
\end{align*}

\text{N,N-Dimethylformamide}\quad[68-12-2]

\begin{align*}
\text{HCO-N(CH}_3)_2 \\
\text{see section XII}
\end{align*}

\begin{align*}
\text{MAK}[\text{ml/m}^3]: \quad & 5 \\
\text{MAK}[\text{mg/m}^3]: \quad & 15 \\
\text{Peak lim}: \quad & \text{II}(2) \\
\text{Preg gr}: \quad & \text{B} \\
\text{prerequisite for Group C see documentation} \\
\text{Perc abs}: \quad & \text{H} \\
\text{Carc cat}: \quad & 4
\end{align*}

\text{Dimethyl glutarate}\quad[1119-40-0]

\begin{align*}
\text{see also dicarboxylic acid (C4-C6) dimethylster} \\
\text{The substance can occur simultaneously as vapour and aerosol.}
\end{align*}

\begin{align*}
\text{\text{CH}_3\text{OOC-(CH}_3)_2\text{-COO-CH}_3}
\end{align*}

\begin{align*}
\text{VP}[\text{hPa}]: \quad & 0.13 \\
\text{see section IIb}
\end{align*}

\begin{align*}
\text{MAK}[\text{ml/m}^3]: \quad & – \\
\text{MAK}[\text{mg/m}^3]: \quad & – \\
\text{Peak lim}: \quad & – \\
\text{Preg gr}: \quad & – \\
\text{Dimethyl glyoxal → Diacetyl} \\
\text{2,6-Dimethyl-4-heptanone → Diisobutyl ketone}
\end{align*}

\text{Dimethyl hexanedioate → Dimethyl adipate}

\text{★ 1,1-Dimethylhydrazine}\quad[57-14-7]

\begin{align*}
\text{H}_2\text{N-N(CH}_3)_2 \\
\text{VP}[\text{hPa}]: \quad & 209.31 \text{at } 25\text{°C}
\end{align*}

\begin{align*}
\text{MAK}[\text{ml/m}^3]: \quad & – \\
\text{MAK}[\text{mg/m}^3]: \quad & – \\
\text{Peak lim}: \quad & – \\
\text{Preg gr}: \quad & – \\
\text{Perc abs}: \quad & \text{H} \\
\text{Sens}: \quad & \text{Sh} \\
\text{Carc cat}: \quad & 2 \\
\text{Muta cat}: \quad & 3A
\end{align*}

\text{★ 1,2-Dimethylhydrazine}\quad[540-73-8]

\begin{align*}
\text{H}_3\text{C-NH-NH-CH}_3 \\
\text{VP}[\text{hPa}]: \quad & 93.19 \text{at } 25\text{°C}
\end{align*}

\begin{align*}
\text{MAK}[\text{ml/m}^3]: \quad & – \\
\text{MAK}[\text{mg/m}^3]: \quad & – \\
\text{Peak lim}: \quad & – \\
\text{Preg gr}: \quad & – \\
\text{Perc abs}: \quad & \text{H} \\
\text{Sens}: \quad & \text{Sh} \\
\text{Carc cat}: \quad & 2 \\
\text{Muta cat}: \quad & 3A
\end{align*}

\text{Dimethyl hydrogen phosphate}\quad[868-85-9]

\begin{align*}
\text{H}_3\text{C-}\overset{\text{O}}{\text{O}}-\overset{\text{O}}{\text{C}}\overset{\text{H}}{\text{O}}\overset{\text{O}}{\text{CH}_3}
\end{align*}

\begin{align*}
\text{MAK}[\text{ml/m}^3]: \quad & – \\
\text{MAK}[\text{mg/m}^3]: \quad & – \\
\text{Peak lim}: \quad & – \\
\text{Preg gr}: \quad & – \\
\text{Carc cat}: \quad & 3 \\
\text{3,7-Dimethyl-7-hydroxyoctanal → Hydroxycitronellal}
\end{align*}

\text{N,N-Dimethylisopropylamine}\quad[996-35-0]

\begin{align*}
\text{(CH}_3)_2\text{CH-N(CH}_3)_2 \\
\text{VP}[\text{hPa}]: \quad & 170
\end{align*}

\begin{align*}
\text{MAK}[\text{ml/m}^3]: \quad & 1 \\
\text{MAK}[\text{mg/m}^3]: \quad & 3.6 \\
\text{Peak lim}: \quad & \text{I}(2) \\
\text{Preg gr}: \quad & \text{D}
\end{align*}
N,N-Dimethyl nitrosamine
→ N-Nitrosodimethylamine

**Dimethylol dihydroxyethyleneurea**
[1854-26-8]

see section IV
Sens: Sh

1,3-Dimethylol-5,5-dimethyl hydantoin
[6440-58-0]

see section IIb and Xc
MAK[l/m³]: –
MAK[mg/m³]: –
Peak lim: –
Preg gr: –
Perc abs: H
Carc cat: 2

Dimethyl sulfamoyl chloride
[13360-57-1]
The substance can occur simultaneously as vapour and aerosol.

VP[hPa]: 3 at 44°C
MAK[l/m³]: –
MAK[mg/m³]: –
Peak lim: –
Preg gr: –
Perc abs: H
Carc cat: 2

**Dimethyl sulfate**
[77-78-1] (H₂CO₂SO₂)

see section XII
MAK[l/m³]: –
MAK[mg/m³]: –
Peak lim: –
Preg gr: –
Perc abs: H
Carc cat: 2

Dimethyl sulfide
[75-18-3] H₂C-S-CH₃

see section IIb
MAK[l/m³]: 50
MAK[mg/m³]: 160
Peak lim: I(2)
Preg gr: B
prerequisite for Group C see documentation
Perc abs: H

Dimethyltin compounds → Methyltin compounds
Dimethyltin bis(2-ethylhexylmercaptoacetate)
[DMT(2-EHMA)₂] → Methyltin compounds
Dimethyltin bis(isooctylmercaptoacetate)
[DMT(IOMA)₂] → Methyltin compounds

Dinickel trioxide → Nickel and nickel compounds

**Dinitrobenzene (all isomers)**
[25154-54-5]
The substance can occur simultaneously as vapour and aerosol.

VP[hPa]: 0.0013 at 25°C (calculated value)
MAK[l/m³]: –
MAK[mg/m³]: –
Peak lim: –
Preg gr: –
Perc abs: H
Carc cat: 3
→ 1,2-Dinitrobenzene
[528-29-0]
→ 1,3-Dinitrobenzene
[99-65-0]
→ 1,4-Dinitrobenzene
[100-25-4]
4,6-Dinitro-o-cresol
[534-52-1]
The substance can occur simultaneously as vapour and aerosol.

\[ \text{VP(\text{hPa})}: 1.6 \times 10^{-4} \text{ at } 25^\circ \text{C} \]

see section IIb

MAK[ml/m³]: –
MAK[mg/m³]: –
Peak lim: –
Preg gr: –
Perc abs: H

Dinitrogen monoxide \to Nitrous oxide

Dinitronaphthalene (all isomers)
[27478-34-8]

\[ \text{MAK[ml/m³]}: – \]
\[ \text{MAK[mg/m³]}: – \]
\[ \text{Peak lim: –} \]
\[ \text{Preg gr: –} \]
\[ \text{Perc abs: H} \]

Dinitrotoluene (mixtures of isomers)
[25321-14-6]
The substance can occur simultaneously as vapour and aerosol.

\[ \text{VP[\text{hPa}] : } 5.3 \times 10^{-4} \text{ at } 25^\circ \text{C} \]

see section IIb

MAK[ml/m³]: –
MAK[mg/m³]: –
Peak lim: –
Preg gr: –
Perc abs: H
Carc cat: 2

Dinonyl-naphthalenesulfonic acid calcium salt
\to Calcium bis(dinonylnaphthalenesulphonate)

4,4'-Dioctyl diphenylamine
[101-67-7]

see section IIb and Xc

MAK[ml/m³]: –
MAK[mg/m³]: –
Peak lim: –
Preg gr: –

Di-n-octyl phosphite \to Di-n-octyl phosphonate

Di-n-octyl phosphonate
[1809-14-9]

see also

Di-n-butyl phosphonate

\[ \text{VP[\text{hPa}] : } 2.1 \times 10^{-7} \text{ at } 25^\circ \text{C} \]

see section IIb and Xc

MAK[ml/m³]: –
MAK[mg/m³]: –
Peak lim: –
Preg gr: –

Di-sec-octyl phthalate \to Di(2-ethylhexyl) phthalate (DEHP)

Di-n-octyltin compounds \to n-Octyltin compounds

Diospyros spp. \to Woods

Dioxacyclopentane \to 1,3-Dioxolane (Dioxacyclopentane)

1,4-Dioxane
[123-91-1]

\[ \text{MAK[ml/m³]} : 10 \]
\[ \text{MAK[mg/m³]} : 37 \]
\[ \text{Peak lim: II(2)} \]
\[ \text{Preg gr: C} \]
\[ \text{Perc abs: H} \]
\[ \text{Carc cat: 4} \]

1,3-Dioxolane (Dioxacyclopentane)
[646-06-0]

\[ \text{MAK[ml/m³]} : 50 \]
\[ \text{MAK[mg/m³]} : 150 \]
\[ \text{Peak lim: II(2)} \]
\[ \text{Preg gr: B} \]
\[ \text{Perc abs: H} \]

3,6-Dioxyoctane-1,8-diyl dimethacrylate
\to Triethylene glycol dimethacrylate

Dipentamethylenethiuram disulfide
[94-37-1]

see section IIb

MAK[ml/m³]: –
MAK[mg/m³]: –
Peak lim: –
Preg gr: –
Sens: Sh

Diphenyl \to Biphenyl
Diphenylamine
[122-39-4]
The substance can occur simultaneously as vapour and aerosol.

\[
\text{NH} \quad \text{C(CH}_3\text{)}_2\text{CH}_2\text{C(CH}_3\text{)}_2
\]

VP[hPa]: 0.33
see section Xc

\[
\text{MAK}[\text{mg}/\text{m}^3]: \quad 5 \, \text{l}
\]
Peak lim: II(2)
Preg gr: C
Perc abs: H
Carc cat: 3

Diphenylamine, octylated (Benzenamine, N-phenyl-, reaction products with 2,4,4-trimethylpentene)
[68411-46-1]

\[
\text{C(CH}_3\text{)}_2\text{CH}_2\text{C(CH}_3\text{)}_2
\]

see section IIb and Xc

\[
\text{MAK}[\text{ml}/\text{m}^3]: \quad –
\]
\[
\text{MAK}[\text{mg}/\text{m}^3]: \quad –
\]
Peak lim: –
Preg gr: –

Diphenylamine, reaction products with styrene and 2,4,4-trimethylpentene
[68921-45-9]
see section IIb and Xc

\[
\text{MAK}[\text{ml}/\text{m}^3]: \quad –
\]
\[
\text{MAK}[\text{mg}/\text{m}^3]: \quad –
\]
Peak lim: –
Preg gr: –

Diphenyl cresyl phosphate
[26444-49-5]

\[
\text{O} \quad \text{P} \quad \text{O}
\]

VP[hPa]: <0.01
see section IIb

\[
\text{MAK}[\text{ml}/\text{m}^3]: \quad –
\]
\[
\text{MAK}[\text{mg}/\text{m}^3]: \quad –
\]
Peak lim: –
Preg gr: –

Diphenyl ether
[101-84-8]
The substance can occur simultaneously as vapour and aerosol.

\[
\text{O}
\]

VP[hPa]: 0.027 at 25°C

\[
\text{MAK}[\text{ml}/\text{m}^3]: \quad 1
\]
\[
\text{MAK}[\text{mg}/\text{m}^3]: \quad 7.1
\]
Peak lim: I(1)
Preg gr: C
classification in Pregnancy Risk Group C was re-evaluated in 2011 and confirmed

\[
1,2\text{-Diphenylhydrazine} \rightarrow \text{Hydrazobenzene}
\]
\[
\text{Diphenylmethane}-4,4'\text{-diisocyanate} \rightarrow 4,4'\text{-Methylene diphenyl diisocyanate (MDI)}
\]
\[
\text{N,N-Diphenylnitrosamine} \rightarrow \text{N-Nitrosodiphenylamine}
\]
\[
\text{N,N-Diphenyl-p-phenylenediamine}
\]
[74-31-7]
see section IV
Sens: Sh

Diphosphorus pentoxide → Phosphorus pentoxide

Di(2-propylheptyl) phthalate
[53306-54-0]
Peek lim: –
Preg gr: –

\[
\text{Di(2-propylheptyl) phthalate}
\]

\[
\text{Disodium 2',7'-dibromo-4'-(hydroxymercury) fluorescein} \rightarrow \text{Merbromin}
\]

Disperse blue 106/124
[68516-81-4; 15141-18-1]

\[
\text{Disperse blue 106/124}
\]

see section IV
Sens: Sh
Disperse Orange 3
[730-40-5]
see section IV
Sens: Sh

Disperse Red 1
[2872-52-8]
see section IV
Sens: Sh

Disperse Red 17
[3179-89-3]
see section IV
Sens: Sh

Disperse Yellow 3
[2832-40-8]
see section IV
Sens: Sh

Distemonanthus benthamianus → Woods

Distillates (petroleum)
[64742-47-8]
hydrotreater light (aerosol)
VP[hPa]: 0.6
see section Xc
MAK[ml/m³]: –
MAK[mg/m³]: –
Peak lim: –
Preg gr: –
Sens: Sh

Distillates (petroleum)
[64742-47-8]
hydrotreater light (vapour)
VP[hPa]: 0.6
see section Xc
MAK[ml/m³]: 50
MAK[mg/m³]: 350
Peak lim: II(2)
Preg gr: C
Carc cat: 3

Disulfiram
[97-77-8]
Reaction with nitrosating agents can result in the formation of carcinogenic N-nitrosodiethylamine, see Section III "Amines which form carcinogenic nitrosamines on nitrosation”.

MAK[ml/m³]: 2 I
MAK[mg/m³]: 2 I
Peak lim: II(8)
Preg gr: D
Sens: Sh

Disulfiram → Sulfur monochloride

Disulfur decafluoride → Sulfur pentafluoride

2,2'-Dithiobisbenzothiazole → 2,2'-Dibenzothiazyl disulfide

2,2'-Dithiobis(N-methylbenzamide)
[2527-58-4]

Dithiocarb → Sodium diethyldithiocarbamate

Dithiocarb sodium → Sodium diethyldithiocarbamate

Ditridecyl phthalate
[119-06-2]

Divinylbenzene (all isomers)
[1321-74-0]
The substance can occur simultaneously as vapour and aerosol.

Docosanoic acid → Behenic acid

Dodecanedioic acid
[693-23-2]
see section IIb and Xc

Dodecanoic acid → Lauric acid
1-Dodecanol
[112-53-8]
The substance can occur simultaneously as vapour and aerosol.

\[
CH_2-(CH_2)_9-CH_2OH
\]

VP[hPa]: 1.1 \times 10^{-3}
see section IIb and Xc

MAK[ml/m³]: –
MAK[mg/m³]: –
Peak lim: –
Preg gr: –

Dodecyl alcohol → 1-Dodecanol

DOP → Di(2-ethylhexyl)phthalate (DEHP)

Douka (Tieghemella africana) → Woods

DPHP → Di(2-propylheptyl) phthalate

**Dust, general threshold limit value (inhalable fraction)**

see section Vf and g

MAK[mg/m³]: 4 I

**Dust, general threshold limit value (respirable fraction)**

(biopersistent granular dusts)

except for ultrafine particles; see section Vh

MAK[mg/m³]: 0.3
for dusts with a density of 1 g/cm³
Peak lim: II(8)
Preg gr: C
Carc cat: 4

**Dusts**

see section V

**Dusts containing enzymes**

see section IVe

East Indian rosewood (Dalbergia latifolia) → Woods

Ebony (Diospyros spp.) → Woods

EDTA → Ethylenediaminetetraacetic acid (EDTA)

Endothiapepsin → Microbial rennets: endothiapepsin and mucorpepsin

**Endrin**
[72-20-8]

\[
\begin{array}{c}
\text{Cl} \\
\text{Cl} \\
\text{Cl} \\
\text{Cl}
\end{array}
\]

MAK[mg/m³]: 0.05 I
Peak lim: II(8)
Preg gr: C
Perc abs: H

**Enflurane**
[13838-16-9]

HA-C-O-CF₂-CHFCl

VP[hPa]: 232

MAK[ml/m³]: 20
MAK[mg/m³]: 150
Peak lim: II(8)
Preg gr: C

Entandrophragma spp. → Woods

Epichlorohydrin → 1-Chloro-2,3-epoxypropane

**EPN, O-Ethyl-O-(4-nitrophenyl)phenylthiophosphonate**

[2104-64-5]

\[
\begin{array}{c}
\text{O} \\
\text{S} \\
\text{CH₃} \\
\text{NO₂}
\end{array}
\]

MAK[mg/m³]: 0.5 I
Peak lim: II(2)
Perc abs: H

1,2-Epoxy-3-allyloxopropene → Allyl glycidyl ether

1,2-Epoxybutane → 1,2-Butylene oxide

**3,4-Epoxycyclohexane carboxylic acid (3,4-epoxycyclohexylmethyl) ester**

[2386-87-0]

1,2-Epoxy-4-(epoxyethyl)cyclohexane → 4-Vinyl-1-cyclohexene dioxide

1,2-Epoxy-3-isopropoxypropane → Isopropyl glycidyl ether (IGE)

**1,2-Epoxypropane**
[75-56-9]

see section XII

MAK[ml/m³]: 2
MAK[mg/m³]: 4.8
Peak lim: I(2)
Preg gr: C
Sens: Sh
Carc cat: 4

2,3-Epoxy-1-propanol → Glycidol (Glycid)

2,3-Epoxypropyl methacrylate → Glycidyl methacrylate

2,3-Epoxypropyl-o-tolylether → Cresyl glycidyl ether
(2,3-Epoxypropyl)trimethylammonium chloride → Glycidyl trimethylammonium chloride

Erionite
see section III
MAK[ml/m^3]: –
MAK[mg/m^3]: –
Peak lim: –
Preg gr: –
Carc cat: 1

Ethanediol → Glyoxal
1,2-Ethanediol → Ethylene glycol
N,N’-1,2-Ethane diylbis-[N-(carboxymethyl) glycine] → Ethylenediaminetetraacetic acid (EDTA)

Ethanol
[64-17-5] H_2C-CH_2OH
VP[hPa]: 59
MAK[ml/m^3]: 200
see definition of Carcinogen Category 5 and supporting documentation
MAK[mg/m^3]: 380
Peak lim: II(4)
Preg gr: C
Carc cat: 5
Muta cat: 5

Ethanolamine → 2-Aminoethanol

Ethene → Ethylene
N-Ethenylcarbazole → Vinylcarbazole
4-Ethenylcyclohexene → 4-Vinylcyclohexene
1-(Ethenyloxy)-2-methylpropane → iso-Butyl vinyl ether

Ethidium bromide
[1239-45-8]

2-Ethoxy-6-amino-naphthalene → 6-Amino-2-ethoxynaphthalene

2-Ethoxyethanol
[110-80-5] H_2C-CH_2-O-CH_2-CH_2-OH
VP[hPa]: ~ 5
see section XII
MAK[ml/m^3]: 2
MAK value applies for the sum of the concentrations of 2-ethoxyethanol and 2-ethoxyethyl acetate in the air.
MAK[mg/m^3]: 7.5
Peak lim: II(8)
Preg gr: B
Perc abs: H

2-(2-Ethoxyethoxy)ethanol → Diethylene glycol monoethyl ether

2-Ethoxyethyl acetate
[111-15-9]
see section XII
MAK[ml/m^3]: 2
MAK value applies for the sum of the concentrations of 2-ethoxyethanol and 2-ethoxyethyl acetate in the air.
MAK[mg/m^3]: 11
Peak lim: II(8)
Preg gr: B
Perc abs: H

1-Ethoxy-2-propanol
[1569-02-4] CH_3-CH_2-O-CH_2(H)-OH-CH_3
VP[hPa]: 10
see section XII
MAK[ml/m^3]: 20
MAK value applies for the sum of the concentrations of 1-ethoxy-2-propanol and 1-ethoxy-2-propyl acetate in the air.
MAK[mg/m^3]: 86
Peak lim: II(2)
Preg gr: C
Perc abs: H
1-Ethoxy-2-propyl acetate
[54839-24-6] \( \text{CH}_3 \cdot \text{O} \cdot \text{CH}_2 \cdot \text{C} \cdot \text{O} \cdot \text{CH}_2 \cdot \text{O} \cdot \text{CH}_2 \cdot \text{CH}_3 \)
VP[hPa]: 2
see section XII
MAK[ml/m³]: 20
MAK value applies for the sum of the concentrations of 1-ethoxy-2-propanol and 1-ethoxy-2-propyl acetate in the air.
MAK[mg/m³]: 120
Peak lim: II(2)
Preg gr: C
Perc abs: H

Ethyl acetate
[141-78-6] \( \text{H}_2\text{C-COOCH}_2\text{CH}_3 \)
VP[hPa]: 97
MAK[ml/m³]: 200
MAK[mg/m³]: 750
Peak lim: I(2)
Preg gr: C

Ethyl acrylate
[140-88-5] \( \text{H}_2\text{C-COOCH}_2\text{CH}_3 \)
VP[hPa]: 39
MAK[ml/m³]: 2
MAK[mg/m³]: 8.3
Peak lim: I(2)
Preg gr: C
Perc abs: H
Sens: Sh

Ethyl alcohol → Ethanol

Ethylamine
[75-04-7] \( \text{H}_3\text{C-CH}_2\text{NH}_2 \)
VP[hPa]: 990
MAK[ml/m³]: 5
MAK[mg/m³]: 9.4
Peak lim: I(2)
A momentary value of 10 ml/m³ (19 mg/m³) should not be exceeded.
Preg gr: D

Ethylbenzene
[100-41-4]
VP[hPa]: 9
MAK[ml/m³]: 20
MAK[mg/m³]: 88
Peak lim: II(2)
Preg gr: C
Perc abs: H
Carc cat: 4

Ethyl bromide → Bromoethane

Ethyl carbamate → Carbamic acid ethyl ester

Ethyl chloride → Chloroethane

Ethyl 2-cyanoacrylate
[7085-85-0] \( \text{H}_2\text{C-COOCH}_2\text{CH}_3 \)
see section IIb
MAK[ml/m³]: –
MAK[mg/m³]: –
Peak lim: –
Preg gr: –

5-Ethyl-3,7-dioxa-1-azabicyclo[3.3.0]octane (EDAO)
[7747-35-5]
releases formaldehyde

Ethylene
[74-85-1] \( \text{H}_2\text{C=CH}_2 \)
see section XII
MAK[ml/m³]: –
MAK[mg/m³]: –
Peak lim: –
Preg gr: –
Sens: Sh

Ethylene bis(oxyethylene)methacrylate → Triethylene glycol dimethacrylate

Ethylene chlorohydrin → 2-Chloroethanol

Ethylene diamine
[107-15-3] \( \text{H}_2\text{NCH}_2\text{CH}_2\text{NH}_2 \)
see section IIb
MAK[ml/m³]: –
MAK[mg/m³]: –
Peak lim: –
Preg gr: –
Sens: Sah

Ethylene diaminetetraacetic acid (EDTA)
[60-00-4]
Avoid exposure to mixtures with iron compounds (formation of FeEDTA).

Ethylene dibromide → 1,2-Dibromoethane

Ethylene dichloride → 1,2-Dichloroethane
Ethylene glycol

\[ \text{HO} \xrightarrow{\text{OH}} \text{HO} \]

The substance can occur simultaneously as vapour and aerosol.

\[ \text{VP[hPa]}: \text{0.053} \]

\[ \text{MAK[ml/m}^3\text{]}: \text{10} \]
\[ \text{MAK[mg/m}^3\text{]}: \text{26} \]

\[ \text{Peak lim: I(2)} \]
\[ \text{Preg gr: C} \]
\[ \text{Perc abs: H} \]

Ethylene glycol-bis-(2-hydroxyethyl)ether

→ Triethylene glycol

Ethylene glycol dimethacrylate

\[ \text{[97-90-5]} \]

The substance can occur simultaneously as vapour and aerosol.

\[ \text{CH}_3 \xrightarrow{\text{CH}_3} \text{H}_2\text{C} \xrightarrow{\text{C}} \text{COO-(CH}_2)_2\text{OOC-C} \xrightarrow{\text{CH}_2} \]

\[ \text{VP[hPa]}: \text{0.25 at 25°C (calculated value)} \]

see section IV

\[ \text{Sens: Sh} \]

Ethylene glycol dinitrate

\[ \text{[628-96-6]} \]

The substance can occur simultaneously as vapour and aerosol.

\[ \text{O}_2\text{NH-O-(CH}_2)_2\text{OH-NO}_2 \]

\[ \text{VP[hPa]}: \text{0.096 at 25°C} \]

see section XII

\[ \text{MAK[ml/m}^3\text{]}: \text{0.01} \]

\[ \text{MAK value applies for the sum of the concentrations of ethylene glycol dinitrate, nitroglycerin and propylene glycol dinitrate in the air.} \]

\[ \text{MAK[mg/m}^3\text{]}: \text{0.063} \]

\[ \text{Peak lim: II(1)} \]
\[ \text{Preg gr: C} \]
\[ \text{Perc abs: H} \]

Ethylene glycol isopropyl ether

→ 2-Isoproxyethanol

Ethylene glycol methacrylate

→ 2-Hydroxyethyl methacrylate

Ethylene glycol monoacrylate → Acrylic acid 2-hydroxyethyl ester

Ethylene glycol monobutyl ether

→ 2-Butoxyethanol

Ethylene glycol monobutyl ether acetate

→ 2-Butoxyethyl acetaete

Ethylene glycol monoethyl ether

→ 2-Ethoxyethanol

Ethylene glycol monoethyl ether acetate

→ 2-Ethoxyethyl acetaete

Ethylene glycol monomethyl ether

→ 2-Methoxyethanol

Ethylene glycol monomethyl ether acetate

→ 2-Methoxyethyl acetate

Ethylene glycol monophenyl ether

→ 2-Phenoxyethanol

Ethylene glycol mono-n-propyl ether

→ 2-Propoxyethanol

Ethylene glycol monopropyl ether acetate

→ 2-Propoxyethyl acetate

Ethylene oxide

\[ \text{[75-21-8]} \]

see section XII

\[ \text{MAK[ml/m}^3\text{]}: \text{–} \]
\[ \text{MAK[mg/m}^3\text{]}: \text{–} \]

\[ \text{Peak lim: –} \]
\[ \text{Preg gr: –} \]
\[ \text{Perc abs: H} \]
\[ \text{Carc cat: 2} \]
\[ \text{Muta cat: 2} \]

Ethylene thiourea

\[ \text{[96-45-7]} \]

\[ \text{MAK[ml/m}^3\text{]}: \text{–} \]
\[ \text{MAK[mg/m}^3\text{]}: \text{–} \]

\[ \text{Peak lim: –} \]
\[ \text{Preg gr: –} \]
\[ \text{Carc cat: 3} \]

Ethyleneimine

\[ \text{[151-56-4]} \]

\[ \text{MAK[ml/m}^3\text{]}: \text{–} \]
\[ \text{MAK[mg/m}^3\text{]}: \text{–} \]

\[ \text{Peak lim: –} \]
\[ \text{Preg gr: –} \]
\[ \text{Carc cat: 3} \]

Ethyl ether

\[ \text{[60-29-7]} \]

\[ \text{H}_3\text{C}\xrightarrow{\text{CH}_2}\text{O-CH}_2\text{CH}_3 \]

\[ \text{VP[hPa]}: \text{214} \]

\[ \text{MAK[ml/m}^3\text{]}: \text{–} \]
\[ \text{MAK[mg/m}^3\text{]}: \text{–} \]

\[ \text{Peak lim: –} \]
\[ \text{Preg gr: –} \]
\[ \text{Carc cat: 2} \]
\[ \text{Muta cat: 2} \]

Ethyl-3-ethoxypropionate

\[ \text{[763-69-9]} \]

\[ \text{O} \xrightarrow{\text{CH}_2\text{CH}_2\text{O-(CH}_2)_2\text{O-CO-CH}_2\text{CH}_3} \]

\[ \text{MAK[ml/m}^3\text{]}: \text{100} \]
\[ \text{MAK[mg/m}^3\text{]}: \text{610} \]

\[ \text{Peak lim: I(1)} \]
\[ \text{Preg gr: C} \]
\[ \text{Perc abs: H} \]
Ethyl formate → Formic acid ethyl ester

Ethyl glycol → 2-Ethoxyethanol

2-Ethyl-1,3-hexanediol
[94-96-2]
The substance can occur simultaneously as vapour and aerosol.

\[
\text{CH}_2\text{-OH}\cdot\text{(CH}_2\text{)}_2\cdot\text{CH}_3
\]
CH(CH_3)-CH_2-OH

VP[hPa]: <0.01
see section IIb and Xc
MAK[ml/m³]: –
MAK[mg/m³]: –
Peak lim: –
Preg gr: –

2-Ethylhexanoic acid
[149-57-5]
The substance can occur simultaneously as vapour and aerosol.

\[
\text{CH}_2=\text{(CH}_2\text{)}_2\cdot\text{CH}(\text{C}_2\text{H}_5)\cdot\text{COOH}
\]

VP[hPa]: 0.04
see section IIb
MAK[ml/m³]: –
MAK[mg/m³]: –
Peak lim: –
Preg gr: –

2-Ethylhexanol
[104-76-7]
The substance can occur simultaneously as vapour and aerosol.

\[
\text{CH}_2\text{(CH}_2\text{)}_3\cdot\text{CH}(\text{C}_2\text{H}_5)\cdot\text{CH}_2\text{-OH}
\]

VP[hPa]: 0.18 at 25°C
MAK[ml/m³]: 10
MAK[mg/m³]: 54
Peak lim: I(1)
Preg gr: C

2-Ethylhexyl acetate
[103-09-3]
The substance can occur simultaneously as vapour and aerosol.

\[
\text{CH}_3\cdot\text{CO}-\text{CH}_2\cdot\text{-CH}_2\cdot\text{(CH}_2\text{)}_2\cdot\text{CH}_3
\]

VP[hPa]: 0.31 at 25°C
MAK[ml/m³]: 10
MAK[mg/m³]: 71
Peak lim: I(1)
Preg gr: C

2-Ethylhexyl acrylate → Acrylic acid
2-ethylhexyl ester

2-Ethylhexyl alcohol → 2-Ethylhexanol

2-Ethylhexyl mercaptoacetate
[7659-86-1]
see section IV
Sens: Sh

2-Ethylhexyl thioglycolate → 2-Ethylhexyl mercaptoacetate

2-Ethyl-2-(hydroxymethyl)-1,3-propanediol triacrylate → Trimethylolpropane triacrylate

Ethylidene chloride → 1,1-Dichloroethane

Ethyl mercaptaan → Ethanethiol

Ethyl(2-mercaptobenzoato-S)mercury sodium salt → Thimerosal

Ethyl mercury → Mercury, organic compounds

Ethyl methacrylate → Methacrylic acid ethyl ester

Ethyl methyl ketoxime → Butanone oxime

Ethyl 2-methyl-2-propenoate → Methacrylic acid ethyl ester

N-Ethylmorpholine
[100-74-3]
see section IIb
MAK[ml/m³]: –
MAK[mg/m³]: –
Peak lim: –
Preg gr: –

O-Ethyl-O-(4-nitrophenyl)phenylthiophosphonate (EPN) → EPN, O-Ethyl-O-(4-nitrophenyl)phenylthiophosphonate

4,4′-(2-Ethyl-2-nitro-1,3-propanediyl) bismorpholin → 4-(2-Nitrobutyl)morpholine (70% w/w) and 4,4′-(2-Ethyl-2-nitro-1,3-propandiy1)bismorpholin (20% w/w)

N-Ethyl-N-nitrosoaniline
→ N-Nitrosoethylphenylamine

N-Ethyl-2-pyrrolidone
[2687-91-4]
(vapour)
The substance can occur simultaneously as vapour and aerosol.

VP[hPa]: 0.18
MAK[ml/m³]: 5
MAK[mg/m³]: 23
Peak lim: I(2)
Preg gr: C
Perc abs: H

Ethyl silicate → Silicic acid tetraethyl ester
Ethyltin compounds
see section IIb
MAK[ml/m³]: –
MAK[mg/m³]: –
Peak lim: –
Preg gr: –
Perc abs: H
Sens: –
For ethyltin compounds whose organic ligands were already designated with “Sa” or “Sh”, these designations also apply.

Ethyl vinyl ether
[109-92-2] H₂C=CH-O-CH₂CH₃
see section IIb
MAK[ml/m³]: –
MAK[mg/m³]: –
Peak lim: –
Preg gr: –

Etidronic acid
→ 1-Hydroxyethylidene-1,1-diphosphonic acid

Eugenol
[97-53-0]
The substance can occur simultaneously as vapour and aerosol.

VP[hPa]: <0.1
see section IV
Sens: Sh

F 134a → 1,1,1,2-Tetrafluoroethane

Farnesol
[4602-84-0] HOCH₂(CH=CH₂)₂CH₂=CH(CH₃)₂
see section IV
Sens: Sh

Fenthiion
[55-38-9]
MAK[mg/m³]: 0.2 I
Peak lim: II(2)
Perc abs: H

Ferbam
[14484-64-1] Fe[S-CS-N(CH₃)₂]
see section IIb
MAK[ml/m³]: –
MAK[mg/m³]: –
Peak lim: –
Preg gr: –

Ferrovanadium
[12604-58-9]
see section IIb
MAK[ml/m³]: –
MAK[mg/m³]: –
Peak lim: –
Preg gr: –

Fibrous dust, inorganic
see section III

Fluorides
[16984-48-8] (as Fluoride)
see section XII
MAK[mg/m³]: 1 I
Peak lim: II(4)
Preg gr: C
classification in Pregnancy Risk Group C was re-evaluated in 2011 and confirmed
Perc abs: H

Fluorine
[7782-41-4] F₂
see section IIb
MAK[ml/m³]: –
MAK[mg/m³]: –
Peak lim: –
Preg gr: –

Fluorocarbon 134a → 1,1,1,2-Tetrafluoroethane

Fluorotrichloromethane
→ Trichlorofluoromethane (FC-11)

Formaldehyde
[50-00-0] HCHC
MAK[ml/m³]: 0.3
MAK[mg/m³]: 0.37
During exposure to mixtures it should be ensured that irritant effects do not occur.
Peak lim: I(2)
A momentary value of 1 ml/m³ (1.2 mg/m³) should not be exceeded.
Preg gr: C
Sens: Sh
Carc cat: 4
Muta cat: 5

Formaldehyde condensation products with p-tert-butylphenol
(low molecular)
see section IV
Sens: Sh

Formaldehyde condensation products with phenol
(low-molecular)
see section IV
Sens: Sh
Formamide  
[75-12-7]  \( \text{NH}_2\text{CHO} \)

see section IIb

- MAK\([\text{ml/m}^3]\): –
- MAK\([\text{mg/m}^3]\): –
- Peak lim: –
- Preg gr: –
- Perc abs: H

Formic acid  
[64-18-6]  \( \text{HCOOH} \)

- VP\([\text{hPa}]\): 42
- MAK\([\text{ml/m}^3]\): 5
- MAK\([\text{mg/m}^3]\): 9.5
- Peak lim: I(2)
- Preg gr: C
- Perc abs: H

Formic acid ethyl ester  
[109-94-4]  \( \text{HCOOCH}_2\text{CH}_3 \)

- VP\([\text{hPa}]\): 256
- MAK\([\text{ml/m}^3]\): 100
- MAK\([\text{mg/m}^3]\): 310
- Peak lim: I(1)
- Preg gr: C
- Perc abs: H

Formic acid methyl ester  
[107-31-3]  \( \text{HCO-OCH}_3 \)

- VP\([\text{hPa}]\): 640
- MAK\([\text{ml/m}^3]\): 50
- MAK\([\text{mg/m}^3]\): 120
- Peak lim: II(2)
- Preg gr: C
- Perc abs: H

Fragrance components

Fraké (Terminalia superba) → Woods
Framiré (Terminalia ivorensis) → Woods

Fumes

see section V

2-Furaldehyde → Furfural

Furan  
[110-00-9]

- MAK\([\text{ml/m}^3]\): 0.02
- MAK\([\text{mg/m}^3]\): 0.056
- Peak lim: II(2)
- Preg gr: D
- Perc abs: H
- Carc cat: 4

Furfural  
[98-01-1]

- MAK\([\text{ml/m}^3]\): –
- MAK\([\text{mg/m}^3]\): –
- Peak lim: –
- Preg gr: –
- Perc abs: H
- Carc cat: 3

Gallium arsenide → Arsenic

Gasolines

see section Xb

Gedu nohor (Entandrophragma angolense) → Woods

Geraniol  
[106-24-1]

The substance can occur simultaneously as vapour and aerosol.

- Sens: Sh

Germanium tetrahydride  
[7782-65-2]  \( \text{GeH}_4 \)

see section IIb

- MAK\([\text{ml/m}^3]\): –
- MAK\([\text{mg/m}^3]\): –
- Peak lim: –
- Preg gr: –

Glass fibres (fibrous dust)

see section III

- MAK\([\text{ml/m}^3]\): –
- MAK\([\text{mg/m}^3]\): –
- Peak lim: –
- Preg gr: –
- Carc cat: 2
Glutaraldehyde
[111-30-8] OCH-(CH₂)₂-CHO

MAK[ml/m³]: 0.05
MAK[mg/m³]: 0.21
Peak lim: I(2)
A momentary value of 0.2 ml/m³ (0.83 mg/m³) should not be exceeded.
Preg gr: C
classification in Pregnancy Risk Group C was re-evaluated in 2011 and confirmed
Sens: Sah
Carc cat: 4

Glutaric acid
[110-94-1]

MAK[mg/m³]: 2 I
Peak lim: I(2)
Preg gr: C

Glutaric acid, dimethyl ester → Dimethyl glutarate

Glycerol
[56-81-5] HOCH₂-CH(OH)-CH₂OH

see section Xc
MAK[mg/m³]: 200 I
Peak lim: I(2)
Preg gr: C

Glycerol trinitrate → Nitroglycerin

Glycidol (Glycide)
[556-52-5]

see section XII
MAK[ml/m³]: –
MAK[mg/m³]: –
Peak lim: –
Preg gr: –
Perc abs: H
Sens: Sh
Carc cat: 3

Glycidyl compounds (epoxides)
see section IVe

Glycidyl methacrylate
[106-91-2] CH₃

see section IV
Sens: Sh

Glycidyl trimethylammonium chloride
[3033-77-0] OHC-CH₂-CH₂-O

MAK[ml/m³]: –
MAK[mg/m³]: –
Peak lim: –
Preg gr: –
Perc abs: H
Sens: Sh
Carc cat: 2

Glycol → Ethylene glycol
Glycol dinitrate → Ethylene glycol dinitrate
Glycolic acid n-butylester → Hydroxyacetic acid butyl ester

Glyoxal
[107-22-2] OHC-CHO

MAK[ml/m³]: –
MAK[mg/m³]: –
Peak lim: –
Preg gr: –
Perc abs: H
Sens: Sh
Carc cat: 3

Gold
[7440-57-5] Au
and its inorganic compounds
see section IIb
MAK[ml/m³]: –
MAK[mg/m³]: –
Peak lim: –
Preg gr: –
Perc abs: H
Sens: Sh
only soluble gold compounds

Gonystylus bancanus → Woods
Granular biopersistent dusts → Dust, general threshold limit value (respirable fraction)

Graphite
[7782-42-5] C
(inhalable fraction)
see section VI and g
MAK[mg/m³]: 4 I
Preg gr: C
Carc cat: 3

Graphite
[7782-42-5] (respirable fraction)
except for ultrafine particles; see section Vh
see section VI
MAK[mg/m³]: 0.3 R
multiplied with the material density
Peak lim: II(8)
Preg gr: C
Carc cat: 4

Grevillea robusta → Woods
Hafnium
[7440-58-6]
and its compounds
see section IIb
MAK[ml/m³]: –
MAK[mg/m³]: –
Peak lim: –
Preg gr: –

Halloysite
[12298-43-0] Al₂(Si₂O₅) x H₂C (fibrous dust)
see section III
MAK[ml/m³]: –
MAK[mg/m³]: –
Peak lim: –
Preg gr: –
Carc cat: 3

Halothane
[151-67-7] BrCHC₂F₂
VP[hPa]: 242
see section XII
MAK[ml/m³]: 5
MAK[mg/m³]: 41
Peak lim: II(8)
Preg gr: B
Carc cat: 1

Hard coal dust → Coal mine dust

Hard metal containing tungsten carbide and cobalt
(inhalable fraction)
MAK[ml/m³]: –
MAK[mg/m³]: –
Peak lim: –
Preg gr: –
Perc abs: H
Sens: Sah
Carc cat: 1
Muta cat: 3A

HDDA → 1,6-Hexanediol diacrylate

Hemicellulases → Xylanases

Hemimellitene (1,2,3-Trimethylbenzene) → Trimethylbenzene (all isomers)

Hempa → Hexamethylphosphoric acid triamide

Heptachlor
[76-44-8]
MAK[mg/m³]: 0.05 I
Peak lim: II(8)
Preg gr: D
Perc abs: H
Carc cat: 4

Heptadecafluoro-1-octanesulfonic acid → Perfluorooctanesulfonic acid (PFOS)

Hf

n-Heptane
[142-82-5] H₃C-C₃H₇-C₇H₁₇
VP[hPa]: 48
see section XII
MAK[ml/m³]: 500
MAK[mg/m³]: 2100
Peak lim: I(1)
Preg gr: D

1,7-Heptanedicarboxonic acid → Azelaic acid

3-Heptanone
[106-35-4] CH₃-CH₂-CO-(CH₂)₂-CH₃
VP[hPa]: 1.5
MAK[ml/m³]: 10
MAK[mg/m³]: 47
Peak lim: I(2)
Preg gr: D

Hexachlorobenzene
[118-74-1]
see section XII
MAK[ml/m³]: –
MAK[mg/m³]: –
Peak lim: –
Preg gr: D
Perc abs: H
Carc cat: 1

Hexachloro-1,3-butadiene
[87-68-3]
The substance can occur simultaneously as vapour and aerosol.
Cl₃C=CCl-CCl-CCl₂
VP[hPa]: 0.29 at 25°C
MAK[ml/m³]: 0.02
MAK[mg/m³]: 0.22
Peak lim: II(2)
Preg gr: C
Perc abs: H
Carc cat: 4

α-Hexachlorocyclohexane
[319-84-6]
MAK[mg/m³]: 0.5 I
Peak lim: II(8)
Preg gr: D
Perc abs: H
Carc cat: 4
**β-Hexachlorocyclohexane**

[319-85-7]

\[
\begin{array}{c}
\text{Cl} \\
\text{C} \\
\text{C} \\
\text{Cl} \\
\text{Cl} \\
\end{array}
\]

MAK\([\text{mg/m}^3]\): 0.1 I
Peak lim: II(8)
Preg gr: D
Perc abs: H
Carc cat: 4

**γ-Hexachlorocyclohexane → Lindane**

1,2,3,4,5,6-Hexachlorocyclohexane
techn. mixture of α-HCH [319-84-6] and β-HCH [319-85-7]

MAK\([\text{mg/m}^3]\): 0.1 I
(Conc. α-HCH divided by 5) + Conc. β-HCH = 0.1
Peak lim: II(8)
Preg gr: D
Perc abs: H
Carc cat: 4

**Hexachlorocyclopentadiene**

[77-47-4]
The substance can occur simultaneously as vapour and aerosol.

\[
\begin{array}{c}
\text{Cl} \\
\text{C} \\
\text{Cl} \\
\text{C} \\
\text{Cl} \\
\end{array}
\]

VP\([\text{hPa}]\): 0.1 at 25°C
see section IIb
MAK\([\text{ml/m}^3]\): –
MAK\([\text{mg/m}^3]\): –
Peak lim: –
Preg gr: –
Perc abs: H
Sens: Sh
Carc cat: 3

**Hexachloroethane**

[67-72-1]
The substance can occur simultaneously as vapour and aerosol.

\[
\text{Cl}_3\text{C}=\text{C} \text{Cl}
\]

VP\([\text{hPa}]\): 0.4
MAK\([\text{ml/m}^3]\): 1
MAK\([\text{mg/m}^3]\): 9.8
Peak lim: II(2)
Preg gr: C
Perc abs: H
Carc cat: 3

Hexachloronaphthalenes → Chlorinated naphthalenes

Hexadecanoic acid → Palmitic acid

**1-Hexadecanol**

[36653-82-4]
The substance can occur simultaneously as vapour and aerosol.

\[
\text{HO}-(\text{CH}_2)_{15}\text{CH}_2
\]

VP\([\text{hPa}]\): <0.01
see section Ib and Xc
MAK\([\text{ml/m}^3]\): –
MAK\([\text{mg/m}^3]\): –
Peak lim: –
Preg gr: –
Perc abs: H
Sens: Sh
Carc cat: 3

**1,1,1,3,3,3-Hexafluoro-2-(fluoromethoxy) propane → Sevoflurane**

Hexahydrophthalic acid diglycidylester

[5493-45-8]

\[
\begin{array}{c}
\text{H}_2\text{C} & \text{C} & \text{O} \\
\text{CH}_2 & \text{CH} & \text{CH}_2
\end{array}
\]

MAK\([\text{ml/m}^3]\): –
MAK\([\text{mg/m}^3]\): –
Peak lim: –
Preg gr: –
Perc abs: H
Sens: Sh
Carc cat: 3

**Hexahydrophthalic anhydride**

[85-42-7]
The substance can occur simultaneously as vapour and aerosol.

\[
\begin{array}{c}
\text{C} & \text{O} \\
\text{C} \\
\text{CO} & \text{C} & \text{C}
\end{array}
\]

see section IV
Sens: Sa

Hexahydro-1,3,5-triethyl-s-triazine
→ 1,3,5-Triethylhexahydro-1,3,5-triazine

**Hexamethylene bis(3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionate)**

[35074-77-2]

\[
\begin{array}{c}
\text{C} & \text{C} & \text{OH} \\
\text{O} & \text{OC}-(\text{CH}_3)_2 & \text{O} \\
\text{O} & \text{OC}-(\text{CH}_3)_2 & \text{O}
\end{array}
\]

see section Xc
MAK\([\text{mg/m}^3]\): 10 I
Peak lim: II(2)
Preg gr: C

1,6-Hexamethylene diacrylate
→ 1,6-Hexanediol diacrylate
1,6-Hexamethylene diisocyanate
[822-06-0]
The substance can occur simultaneously as vapour and aerosol.

\[ \text{OCN-(CH}_2\text{)}_6\text{NCC} \]

VP[hPa]: 0.007
MAK[ml/m³]: 0.005
MAK[mg/m³]: 0.035
Peak lim: I(1)
A momentary value of 0.01 ml/m³ (0.070 mg/m³) should not be exceeded.
Preg gr: D
Sens: Sah

Hexamethylenetetramine
[100-97-0]
releases formaldehyde

see section IIb and Xc
MAK[ml/m³]: –
MAK[mg/m³]: –
Peak lim: –
Preg gr: –
Sens: Sh

Hexamethylphosphoric acid triamide
[680-31-9]

\[ \text{OP[}\text{N(CH}_3\text{)}_2\text{]} \]

MAK[ml/m³]: –
MAK[mg/m³]: –
Peak lim: –
Preg gr: –
Perc abs: H
Carc cat: 2
Muta cat: 2

n-Hexane
[110-54-3]

\[ \text{H}_3\text{C-(CH}_2\text{)}_4\text{-CH}_3 \]

VP[hPa]: 160 see section XII
MAK[ml/m³]: 50
MAK[mg/m³]: 180
Peak lim: II(8)
Preg gr: C

Hexane (all isomers except n-Hexane) and Methylcyclopentane

1,6-Hexanedioic acid → Adipic acid

1,6-Hexanediol diacrylate
[13048-33-4]
The substance can occur simultaneously as vapour and aerosol.

\[ \text{H}_2\text{C}^\cdot\text{CH-COO-(CH}_2\text{)}_3\text{-OOC-CH}^\cdot\text{CH}_2 \]

VP[hPa]: 0.014 at 50°C
see section IV
Sens: Sh

1,6-Hexanediol diglycidylether → Diglycidyl hexanediol

2,2’-[1,6-Hexanediylbis(oxy)methylene)] bisoxirane → Diglycidyl hexanediol

1-Hexanol
[111-27-3]
The substance can occur simultaneously as vapour and aerosol.

\[ \text{H}_3\text{C-(CH}_2\text{)}_4\text{-CH}_2\text{OH} \]

VP[hPa]: 0.93
see section IIb and Xc
MAK[ml/m³]: –
MAK[mg/m³]: –
Peak lim: –
Preg gr: –

2-Hexanone
[591-78-6]

\[ \text{H}_3\text{C-(CH}_2\text{)}_4\text{-CO-CH}_3 \]

see section XII
MAK[ml/m³]: 5
MAK[mg/m³]: 21
Peak lim: II(8)
Perc abs: H
Hexone
[108-10-1] \((H_2C)_2CH-CH_2-CO-CH_3\)
VP[hPa]: 21
see section XII
MAK[ml/m³]: 20
MAK[mg/m³]: 83
Peak lim: I(2)
Preg gr: C
Perc abs: H

sec-Hexyl acetate
[108-84-9]

2-Hexyl-1-decanol
[2425-77-6]
The substance can occur simultaneously as vapour and aerosol.

Hexylene glycol
[107-41-5]
The substance can occur simultaneously as vapour and aerosol.

Hydrazine hydrate
[7803-57-8] \(H_2N-NH_2 \cdot H_2O\)
and hydrazine salts
see section IV
Sens: Sh

Hydrazobenzene
[122-66-7]

Hydrazoic acid
[7782-79-8] \(HN_3\)

Hydrocarbon solvent C₆-C₁₃ dearomatised
→ Naphtha (petroleum)
Hydrochloric acid → Hydrogen chloride
Hydrocyanic acid → Hydrogen cyanide

Hydrogen bromide
[10035-10-6] \(HBr\)

Hydrogen chloride
[7647-01-0] \(HCl\)

Hydrogen cyanide
[74-90-8] \(HCN\)

Hydrogen fluoride
[7664-39-3] \(HF\)

Hydrazine
[302-01-2] \(H_2N-NH_2\)
VP[hPa]: 13
see section XII
MAK[ml/m³]: –
MAK[mg/m³]: –
Peak lim: –
Preg gr: –
Perc abs: H
Sens: Sh
Carc cat: 2
**Hydrogen peroxide**

[7722-84-1] \( \text{H}_2\text{O}_2 \)

- MAK\([\text{ml/m}^3]\): 0.5
- MAK\([\text{mg/m}^3]\): 0.7
- Peak lim: I(1)
- Preg gr: C
- Carc cat: 4

**Hydrogen selenide**

[7783-07-5] \( \text{H}_2\text{Se} \)

- MAK\([\text{ml/m}^3]\): 0.006
- MAK\([\text{mg/m}^3]\): 0.02
- Peak lim: II(8)
- Preg gr: C
- Carc cat: 3

**Hydrogen sulfide**

[7783-06-4] \( \text{H}_2\text{S} \)

- MAK\([\text{ml/m}^3]\): 5
- MAK\([\text{mg/m}^3]\): 7.1
- Peak lim: II(2)
- Preg gr: C

\( \alpha\)-Hydro-\(\omega\)-hydroxy-poly[oxy(methyl-1,2-ethandiyl)] \(\rightarrow\) Polypropylene glycol (PPG)

**Hydroquinone**

[123-31-9]  

The substance can occur simultaneously as vapour and aerosol.

\[ \text{HO-} \]

\[ \text{OH} \]

\[ \text{VP[\text{hPa}]}: 0.015 \]

- MAK\([\text{ml/m}^3]\): –
- MAK\([\text{mg/m}^3]\): –
- Peak lim: –
- Preg gr: –
- Perc abs: H
- Sens: Sh
- Carc cat: 2
- Muta cat: 3A

**Hydroxyacetic acid butyl ester**

[7397-62-8] \( \text{HO-CH}_2\text{-CO-O-CH}_2\text{-CH}_2\text{-CH}_2\text{-CH}_3 \)

see section IIb

- MAK\([\text{ml/m}^3]\): –
- MAK\([\text{mg/m}^3]\): –
- Peak lim: –
- Preg gr: –

3-Hydroxyaniline \(\rightarrow\) 3-Aminophenol

p-Hydroxyaniline \(\rightarrow\) p-Aminophenol

**Hydroxycitronellal**

[107-75-5]  

The substance can occur simultaneously as vapour and aerosol.

\[ \text{VP[\text{hPa}]}: <1 \]

see section IV

- Sens: Sh

\[ \text{1-Hydroxy-1’-hydroperoxydicyclohexylperoxide} \]

[78-18-2]  

see section Xa

**Hydroxylamine**

[7803-49-8] \( \text{NH}_2\text{OH} \)

and its salts

see section IV

- Sens: Sh

1-Hydroxy-2-methoxy-4-(1-propenyl)benzene \(\rightarrow\) Isoeugenol

**2-(2-Hydroxyethoxy)-ethylamine**

\( \rightarrow\) 2-(2-Aminoethoxy)ethanol

2-Hydroxyethyl acrylate \(\rightarrow\) Acrylic acid

2-hydroxyethyl ester

1-Hydroxyethyl-2-heptadecenyl-imidazoline

[21652-27-7]

\[ \text{CH}_3 \quad \text{N} \quad \text{N} \quad \text{CH} \quad \text{CH} \quad \text{CH} \quad \text{OH} \]

\[ (\text{CH}_2)_2\text{-CH=CH-} (\text{CH}_2)_2\text{-CH}_3 \]

see section IIb and Xc

- MAK\([\text{ml/m}^3]\): –
- MAK\([\text{mg/m}^3]\): –
- Peak lim: –
- Preg gr: –

1-Hydroxyethylidene-1,1-diphosphonic acid

[2809-21-4]  

and its sodium and potassium salts

\[ (\text{RO})_2\text{P-(C-)} (\text{OR})_2 \quad \text{CH}_3 \]

\[ R = \text{H}, \text{K}, \text{Na} \]

see section IIb and Xc

- MAK\([\text{ml/m}^3]\): –
- MAK\([\text{mg/m}^3]\): –
- Peak lim: –
- Preg gr: –

2-Hydroxyethyl methacrylate

[868-77-9]  

see section IIb

- MAK\([\text{ml/m}^3]\): –
- MAK\([\text{mg/m}^3]\): –
- Peak lim: –
- Preg gr: –

N-(2-Hydroxyethyl)-3-methyl-2-quinoxaline-carboxamide 1,4-dioxide \(\rightarrow\) Olaquindox

(N-(2-Hydroxyethyl)-3-methyl-2-quinoxaline-carboxamide 1,4-dioxide)

\( \text{β-Hydroxyethyl phenylether} \)

\(\rightarrow\) 2-Phenoxyethanol

1-Hydroxy-1’-hydroperoxydicyclohexyl peroxide

[78-18-2]  

see section Xa

**Hydroxylamine**

[7803-49-8] \( \text{NH}_2\text{OH} \)

and its salts

see section IV

- Sens: Sh

1-Hydroxy-2-methoxy-4-(1-propenyl)benzene \(\rightarrow\) Isoeugenol
2-Hydroxymethyl-2-nitro-1,3-propanediol
[126-11-4]
use forbidden as component of metal-working fluids and corrosion inhibitors: see “GefStoffV 2010, Anhang II (zu §16 Absatz 2), Nr.4”

C(CH₂-OH)₂(NO₂)

see section IIb and Xc
MAK[ml/m³]: –
MAK[mg/m³]: –
Peak lim: –
Preg gr: –

4-Hydroxy-4-methylpentan-2-one → Diaceton alcohol

4-(4-Hydroxy-4-methyl pentyl)-3-cyclohexene-1-carboxaldehyde (Lyral)
[31906-04-4]
see section IV
Sens: Sh
N-(4-((2-Hydroxy-5-methylphenyl)azo)phenyl)acetamide → Disperse Yellow 3
1-(Hydroxymethyl)propylamine → 2-Aminobutanol

3-Hydroxy-2-naphthalenecarboxylic acid
[92-70-6]
see section IIb
MAK[ml/m³]: –
MAK[mg/m³]: –
Peak lim: –
Preg gr: –

3-Hydroxy-2-naphthoic acid
→ 3-Hydroxy-2-naphthalenecarboxylic acid

4-Hydroxy-3-nitroaniline
→ 2-Nitro-4-aminophenol

12-Hydroxyoctadecanoic acid
→ 12-Hydroxystearic acid

3-Hydroxyphenol → Resorcinol

1-Hydroxy-2-phenoxethane
→ 2-Phenoxyethanol

2-Hydroxy-1,2,3-propanetricarboxylic acid
→ Citric acid

Hydroxypropyl acrylate → Acrylic acid hydroxypropyl ester (all isomers)

2-Hydroxypropyl 2-methyl-2-propenoate
→ Methacrylic acid 2-hydroxypropyl ester

1-Hydroxy-2(1H)-pyridinethione sodium salt
→ Sodium pyrithione

12-Hydroxystearic acid
[106-14-9]
H₂C(CH₃)₂CH(OH)(CH₂)₁₀CO₂H
see section IIb and Xc
MAK[ml/m³]: –
MAK[mg/m³]: –
Peak lim: –
Preg gr: –

Hydroxytoluene → Benzyl alcohol

1-Hydroxy-2,4,5-trichlorobenzene
→ 2,4,5-Trichlorophenol

IBOA → Isobornyl acrylate

Idigbo (Terminalia ivorensis) → Woods

Imazalil
→ 1-(2-Allyloxy)-2-(2,4-dichlorophenyl)ethyl)-1H-imidazole

Imidazole
[288-32-4]
VP[hPa]: 3.3×10⁻³
see section IIb

2-Imidazolidinethione → Ethylene thiourea

Incense cedar (Calocedrus decurrens) → Woods

Indeno[1,2,3-cd]pyrene
[193-39-5]
see Section III, “pyrolysis products of organic materials”

MAK[ml/m³]: –
MAK[mg/m³]: –
Peak lim: –
Preg gr: –

Perc abs: H
Carc cat: 2

Indian ebony (Diospyros ebenum) → Woods

Indium phosphide
[22398-80-7]
InP

MAK[ml/m³]: –
MAK[mg/m³]: –
Peak lim: –
Preg gr: –
Carc cat: 2
Iodine
[7553-56-2]
and inorganic iodides
The substance can occur simultaneously as vapour and aerosol.
\[ I_2 \]

VP\([hPa]\): 0.31 at 25°C
see section IIb
  MAK\([ml/m^3]\): –
  MAK\([mg/m^3]\): –
  Peak lim: –
  Preg gr: –
  Perc abs: H

Iodomethane → Methyl iodide

3-Iodo-2-propynyl butylcarbamate
[55406-53-6]
The substance can occur simultaneously as vapour and aerosol.
\[ \text{O} \]
  \( I-C=\text{C-CH}_2-O-\text{C-NH-C}_3H_7 \)
see section Xc
  MAK\([ml/m^3]\): 0.005
  MAK\([mg/m^3]\): 0.058
  Peak lim: I(2)
  Preg gr: C
  Sens: Sh

Ipe (Tabebuia spp.) → Woods
Ipe peroba (Paratecoma peroba) → Woods
IPPD
→ N-Isopropyl-N’-phenyl-p-phenylenediamine
Iroko (Chlorophora excelsa) → Woods

Iron oxides
(inhalable fraction)
[1345-25-1; 1309-37-1; 1309-38-2; 1317-61-9]
  MAK\([ml/m^3]\): –
  MAK\([mg/m^3]\): –
  Peak lim: –
  Preg gr: –
  Carc cat: 3
  with the exception of iron oxides which are not biologically available

Iron pentacarbonyl
[13463-40-6]
\[ \text{Fe(CO)}_5 \]
  MAK\([ml/m^3]\): 0.1
  MAK\([mg/m^3]\): 0.81
  Peak lim: I(2)
  Preg gr: D
  Perc abs: H

Isatoic anhydride → N-Carboxyanthranilic anhydride
Isoamyl alcohol (3-Methyl-1-butanol)
→ Pentanol (isomers)

Isobornyl acrylate
[5888-33-5]
\[ \begin{array}{c}
  \text{H}_3\text{C} \\
  \text{CH}_3 \\
  \text{O} \\
  \text{C-CH}_2-\text{CH}_3 \\
\end{array} \]
see section IV
Sens: Sh
Isobutane → Butane (both isomers)
Isobutenyl chloride
→ 3-Chloro-2-methylpropene

Isobutyl acetate
[110-19-0]
\[ \text{H}_3\text{C-COOC}_2\text{H}_5 \]
VP\([hPa]\): 18
  MAK\([ml/m^3]\): 100
  MAK\([mg/m^3]\): 480
  Peak lim: I(2)
  Preg gr: C

Isobutyl alcohol
[78-83-1]
\[ (\text{H}_3\text{C})_2\text{CH-CH}_2\text{OH} \]
VP\([hPa]\): 11.7
  MAK\([ml/m^3]\): 100
  MAK\([mg/m^3]\): 310
  Peak lim: I(1)
  Preg gr: C

Isobutylamine → iso-Butylamine
Isobutyl chloroformate → Chloroformic acid butyl ester
Isobutyl phosphate → Triisobutyl phosphate
Isobutyl vinyl ether → iso-Butyl vinyl ether
Isocyanatobenzene → Phenyl isocyanate
Isocyanic acid p-chlorophenyl ester
→ 4-Chlorophenyl isocyanate

Isodecyl oleate
[59231-34-4]
\[ \text{CH}_3(\text{CH}_2)_9\text{COO-C}_9\text{H}_18 \]
see section Xc
  MAK\([ml/m^3]\): –
  MAK\([mg/m^3]\): 5 R
  Peak lim: II(4)
  Preg gr: D
Isoeugenol
[97-54-1]
The substance can occur simultaneously as vapour and aerosol.

\[
\text{H}_3\text{CO} _{\text{CH}3}\]

see section IV

Sens: Sh

– trans-isoeugenol
[5932-68-5]

– cis-Isoeugenol
[5912-86-7]

Isoflurane
[26675-46-7]

\[\text{F}_2\text{C-CHCl-O-CF}_2\]

see section IIb

MAK[ml/m³]: –
MAK[mg/m³]: –
Peak lim: –
Preg gr: –

Isononanoic acid
[3302-10-1]

[26896-18-4]
The substance can occur simultaneously as vapour and aerosol.

\[
\text{CH}_3 \quad \text{CH}_3 \\
\text{CH}_3\text{C-CH}_2\text{-CH-CH}_2\text{-CO}_2\text{H} \\
\text{CH}_3
\]

VP[hPa]: 0.04
see section IIb and Xc

MAK[ml/m³]: –
MAK[mg/m³]: –
Peak lim: –
Preg gr: –

Isooctadecanol
[27458-93-1]

z.B. 
\[\text{HO} _{\text{CH}_2} _{15} \text{-CH}(_{\text{CH}_3})_2\]

see section IIb and Xc

MAK[ml/m³]: –
MAK[mg/m³]: –
Peak lim: –
Preg gr: –

Isopentane → Pentane (all isomers)

Isophorone
[78-59-1]
The substance can occur simultaneously as vapour and aerosol.

\[
\text{H}_3\text{C} _{\text{CH}_3}\]

VP[hPa]: 0.33

MAK[ml/m³]: 2
MAK[mg/m³]: 11
Peak lim: I(2)
Preg gr: C
Carc cat: 3

Isophorone diamine → 3-Aminomethyl-3,5,5-trimethyl-cyclohexylamine (Isophorone diamine)

Isophorone diisocyanate
[4098-71-9]
The substance can occur simultaneously as vapour and aerosol.

\[
\text{H}_3\text{C} _{\text{CH}_3}\]

VP[hPa]: 4×10⁻⁴

MAK[ml/m³]: 0.005
MAK[mg/m³]: 0.046
Peak lim: I(1)
A momentary value of 0.01 ml/m³ (0.092 mg/m³) should not be exceeded.
Preg gr: D
Sens: Sah

Isoprene (2-Methyl-1,3-butadiene)
[78-79-5]

\[
\text{H}_2\text{C=C-CH}=\text{CH}_2
\]

VP[hPa]: 733

MAK[ml/m³]: 3
see definition of Carcinogen Category 5 and supporting documentation
MAK[mg/m³]: 8.5
Peak lim: II(8)
Preg gr: C
Carc cat: 5
Muta cat: 5

Isopropanolamine → 1-Amino-2-propanol

Isopropenyl acetate
[108-22-5]

\[
\text{H}_2\text{C-CH}=\text{O-CH}_2\text{-CH}_3\]

MAK[ml/m³]: 10
MAK[mg/m³]: 46
Peak lim: I(2)
Preg gr: D

Isopropenylbenzene → α-Methyl styrene

2-Isoproxyethanol
[109-59-1]

\[(\text{CH}_2)_2\text{CH-O-CH}_2\text{-CH}_2\text{OH}\]

MAK[ml/m³]: 10
MAK[mg/m³]: 43
Peak lim: I(2)
Preg gr: C
Perc abs: H

Isopropyl acetate → Propylacetate

Isopropyl alcohol
[67-63-0]

\[(\text{H}_3\text{C})_2\text{CHOH}\]

VP[hPa]: 44
see section XII

MAK[ml/m³]: 200
MAK[mg/m³]: 500
Peak lim: II(2)
Preg gr: C
Isopropylamine
[75-31-0]
\[\text{H}_3\text{C}-\text{CH}-\text{CH}_3\text{NH}_2\]

VP[hPa]: 637
MAK[ml/m³]: 5
MAK[mg/m³]: 12
Peak lim: I(2)
A momentary value of 10 ml/m³ (25 mg/m³) should not be exceeded.
Preg gr: C

Isopropylated triphenyl phosphate → Triphenyl phosphate, isopropylated

Isopropylbenzene → iso-Propyl benzene (cumene)

Isopropyl ether
[108-20-3]
\[\text{[H}_3\text{C}]_2\text{CH-O-CH}_3\text{CH}_3\]

VP[hPa]: 180
MAK[ml/m³]: 200
MAK[mg/m³]: 850
Peak lim: I(2)
Preg gr: C

Isopropyl glycidyl ether (IGE)
[4016-14-2]

MAK[ml/m³]: –
MAK[mg/m³]: –
Preg gr: –
Carc cat: 3

4,4′-Isopropylidenediphenol → Bisphenol A

4,4′-Isopropylidenediphenol diglycidyl ether → Bisphenol A diglycidyl ether

4-Isopropylphenyl isocyanate
[31027-31-3]
The substance can occur simultaneously as vapour and aerosol.

\[\text{H}_3\text{C}-\text{CH}-\text{NCC}\]

VP[hPa]: 0.1
see section IIb
MAK[ml/m³]: –
MAK[mg/m³]: –
Peak lim: –
Preg gr: –
Sens: Sh

Kepone → Chlordecone

Kerosine (petroleum)
(aerosol)
[8008-20-6]
see section Xc
MAK[mg/m³]: 5 R
Peak lim: II(4)
Preg gr: C
Carc cat: 3
applies to skin contact

Kerosine (petroleum)
(vapour)
[8008-20-6]
see section Xc
MAK[ml/m³]: 50
MAK[mg/m³]: 350
Peak lim: II(2)
Preg gr: C
Carc cat: 3
applies to skin contact

Ketene
[463-51-4]
\[\text{H}_3\text{C}==\text{CO}\]

see section IIb
MAK[ml/m³]: –
MAK[mg/m³]: –
Peak lim: –
Preg gr: –

Khaya spp. → Woods

Lapacho (Tabebuia avellanedae) → Woods
Laughing gas $\rightarrow$ Nitrous oxide

**Lauric acid**

[143-07-7]

The substance can occur simultaneously as vapour and aerosol.

$$\text{CH}_3\text{C}-(\text{CH}_2)_{10}\text{COOH}$$

$\text{VP hPa: } 2.3\times 10^{-5}$ at 25°C

see section Xc

<table>
<thead>
<tr>
<th>MAK [mg/m³]:</th>
<th>2 I</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak lim:</td>
<td>I(2)</td>
</tr>
<tr>
<td>Preg gr:</td>
<td>D</td>
</tr>
</tbody>
</table>

Lauryl alcohol $\rightarrow$ 1-Dodecanol

Laurylamine dipropylenediamine $\rightarrow$ N-(3-Aminopropyl)-N-dodecylpropane-1,3-diamine

**Lead**

[7439-92-1]

and its inorganic compounds (inhaleable fraction)

except lead arsenate and lead chromate

see section XII

<table>
<thead>
<tr>
<th>MAK [ml/m³]:</th>
<th>–</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAK [mg/m³]:</td>
<td>–</td>
</tr>
<tr>
<td>Peak lim:</td>
<td>–</td>
</tr>
<tr>
<td>Preg gr:</td>
<td>–</td>
</tr>
<tr>
<td>Carc cat:</td>
<td>2</td>
</tr>
<tr>
<td>Muta cat:</td>
<td>3A</td>
</tr>
</tbody>
</table>

**Lead arsenate** $\rightarrow$ Arsenic

**Lead chromate** $\rightarrow$ Chromium(VI) compounds and

**Limba (Terminalia superba)** $\rightarrow$ Woods

**D-Limonene**

[5989-27-5]

$\text{VP hPa: } 5.6\times 10^{-5}$

see section XII

<table>
<thead>
<tr>
<th>MAK [ml/m³]:</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAK [mg/m³]:</td>
<td>28</td>
</tr>
<tr>
<td>Peak lim:</td>
<td>II(4)</td>
</tr>
<tr>
<td>Preg gr:</td>
<td>C</td>
</tr>
<tr>
<td>Perc abs:</td>
<td>H</td>
</tr>
<tr>
<td>Carc cat:</td>
<td>4</td>
</tr>
<tr>
<td>Sens:</td>
<td>Sh</td>
</tr>
</tbody>
</table>

**L,L-Limonene**

[138-86-3]

and similar mixtures

see section IIb

<table>
<thead>
<tr>
<th>MAK [ml/m³]:</th>
<th>–</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAK [mg/m³]:</td>
<td>–</td>
</tr>
<tr>
<td>Peak lim:</td>
<td>–</td>
</tr>
<tr>
<td>Preg gr:</td>
<td>–</td>
</tr>
<tr>
<td>Sens:</td>
<td>Sh</td>
</tr>
</tbody>
</table>

**L-Limonene**

[5989-54-8]

see section IIb

<table>
<thead>
<tr>
<th>MAK [ml/m³]:</th>
<th>–</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAK [mg/m³]:</td>
<td>–</td>
</tr>
<tr>
<td>Peak lim:</td>
<td>–</td>
</tr>
<tr>
<td>Preg gr:</td>
<td>–</td>
</tr>
<tr>
<td>Sens:</td>
<td>Sh</td>
</tr>
</tbody>
</table>

**Lindane**

[58-89-9]

The substance can occur simultaneously as vapour and aerosol.

**Lithium**

[7439-93-2]

and highly irritating lithium compounds (as lithium amide, hydride, hydroxide, oxide, nitride, oxide, tetrahydroaluminate, tetrahydroborate)

see section IIb

<table>
<thead>
<tr>
<th>MAK [ml/m³]:</th>
<th>–</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAK [mg/m³]:</td>
<td>–</td>
</tr>
<tr>
<td>Peak lim:</td>
<td>–</td>
</tr>
<tr>
<td>Preg gr:</td>
<td>–</td>
</tr>
</tbody>
</table>

**Lithium compounds, inorganic**

(as Li [7439-93-2]) except for lithium and highly irritating lithium compounds (as lithium amide, hydride, hydroxide, nitride, oxide, tetrahydroaluminate, tetrahydroborate)

<table>
<thead>
<tr>
<th>MAK [mg/m³]:</th>
<th>0.2 I</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak lim:</td>
<td>I(1)</td>
</tr>
<tr>
<td>Preg gr:</td>
<td>C</td>
</tr>
</tbody>
</table>

**Lithium-12-hydroxystearate**

[7620-77-1]

see section IIb and Xc

<table>
<thead>
<tr>
<th>MAK [ml/m³]:</th>
<th>–</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAK [mg/m³]:</td>
<td>–</td>
</tr>
<tr>
<td>Peak lim:</td>
<td>–</td>
</tr>
<tr>
<td>Preg gr:</td>
<td>–</td>
</tr>
</tbody>
</table>

**Lithium stearate**

[4485-12-5]

see section IIb and Xc

<table>
<thead>
<tr>
<th>MAK [ml/m³]:</th>
<th>–</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAK [mg/m³]:</td>
<td>–</td>
</tr>
<tr>
<td>Peak lim:</td>
<td>–</td>
</tr>
<tr>
<td>Preg gr:</td>
<td>–</td>
</tr>
</tbody>
</table>
Lubricants
Lubricants contain mixtures of hydrocarbons which can occur as particle-vapour mixtures because of their composition.
see section Xc

Lyral → 4-(4-Hydroxy-4-methyl pentyl)-3-cyclohexene-1-carboxaldehyde (Lyral)

Macassar ebony (Diospyros celebica) → Woods

Machaerium scleroxylon → Woods

Manganese oxide
[1309-48-4] MgO (inhalable fraction)
see section VI and g

MAK[mg/m³]: 4 I
Preg gr: C

Manganese oxide
[1309-48-4] (respirable fraction)
except for ultrafine particles; see section Vh

MgO
see section Vf

MAK[mg/m³]: 0.3
multiplied with the material density
Peak lim: II(8)
Preg gr: C
Carc cat: 4

Manganese oxide sulfate
[12286-12-3] MgSO₄·5MgO·8H₂O (fibrous dust)
see section III

MAK[mg/m³]: –
MAK[ml/m³]: –
Peak lim: –
Preg gr: –
Carc cat: 3

Manganese oxide fume
[1309-48-4] MgO
see section IIb and Vh

MAK[ml/m³]: –
MAK[mg/m³]: –
Peak lim: –
Preg gr: –

Mahogany, African (Khaya spp.) → Woods

Mahogany, American (Swietenia spp.) → Woods

Makoré (Tieghemella heckelii) → Woods

Malathion
[121-75-5]

MAK[mg/m³]: 15 I
Peak lim: II(4)
Preg gr: D

Maleic anhydride
[108-31-6]
The substance can occur simultaneously as vapour and aerosol.

VP[hPa]: 0.151
MAK[ml/m³]: 0.02
MAK[mg/m³]: 0.081
Peak lim: I(1)
A momentary value of 0.05 ml/m³ (0.20 mg/m³) should not be exceeded.
Preg gr: C
Sens: Sah

Manganese
[7439-96-5] Mn and its inorganic compounds (inhalable fraction)
see section XII

MAK[mg/m³]: 0.2 R
Peak lim: II(8)
Permagnanates: Peak limitation category II(1)
Preg gr: C

Manganese(II,III) oxide → Manganese

Manganese
[7439-96-5] Mn and its inorganic compounds (respirable fraction)
see section XII

MAK[mg/m³]: 0.02 R
Peak lim: II(8)
Permagnanates: Peak limitation category II(1)
Preg gr: C

Manganous ethylenebis(dithiocarbamate) (Maneb)
[12427-38-2]

CH₂-NH-CS-S⁻ CH₂-NH-CS-S⁻ Mn²⁺
see section IV
Sens: Sh

Manganous-manganic oxide → Manganese

Man-made mineral fibres (fibrous dust)
see section III

MAK[ml/m³]: –
MAK[mg/m³]: –
Peak lim: –
Preg gr: –

Pruno (Mansonia altissima) → Woods

Mansonia altissima → Woods
Mastic asphalt → Bitumen (high-temperature processing, vapours and aerosols)

MBT → 2-Mercaptobenzothiazole

MDI → 4,4′-Methylene diphenyl diisocyanate (MDI)

MDI oligomers → “polymeric MDI”

Mechlorethamine → N-Methyl-bis (2-chloroethyl)amine (nitrogen mustard)

**Medicines, carcinogenic**

see section III

**Merbromin**

[129-16-8]

see section IV

Sens: Sh

2-Mercaptoacetates → Thioglycolates

Mercaptoacetic acid → Thioglycolic acid

**2-Mercaptobenzothiazole**

[149-30-4]

see section VI and g and Xc

MAK[mg/m³]: 4 I

Preg gr: C

classification in Pregnancy Risk Group C was re-evaluated in 2011 and confirmed

Sens: Sh

Carc cat: 3

Mercury, organic compounds

see section XII

MAK[ml/m³]: –

MAK[mg/m³]: –

Peak lim: –

Preg gr: –

Perc abs: H

Sens: Sh

Carc cat: 3

Mesitylene (1,3,5-Trimethylbenzene) → Trimethylbenzene (all isomers)

Mesityl oxide → 4-Methyl-3-penten-2-one

**Metal-working fluids**

Metal-working fluids contain mixtures of hydrocarbons which can occur as particle-vapour mixtures as a result of their composition.

see section Xc

**Metal-working fluids which contain nitrite or nitrite-forming compounds and substances which react with nitrite to yield nitrosamines**

MAK[ml/m³]: –

MAK[mg/m³]: –

Peak lim: –

Preg gr: –

Carc cat: 3

**Methacrylic acid**

[79-41-4]  \( \text{H}_2\text{C} = \text{C}(\text{CH}_2)\text{COOH} \)

VP[hPa]: 0.9

MAK[ml/m³]: 50

MAK[mg/m³]: 180

Peak lim: I(2)

Preg gr: C

**Methacrylic acid ethyl ester**

[97-63-2]  \( \text{H}_2\text{C} = \text{C}(\text{CH}_3)\text{COOCH}_2\text{CH}_3 \)

see section IV

Sens: Sh

Methacrylic acid 2-hydroxyethyl ester → 2-Hydroxyethyl methacrylate

**Methacrylic acid 2-hydroxypropyl ester**

[923-26-2]  \( \text{H}_2\text{C} = \text{C}(\text{CH}_2)\text{COOCH}_2\text{CH}_2\text{OH} \)

The substance can occur simultaneously as vapour and aerosol.

VP[hPa]: 0.096 at 25°C (calculated value)

see section IV

Sens: Sh
Methacrylic acid methyl ester
[80-62-6] \( \text{H}_2\text{C} \equiv \text{C} (\text{CH}_3) \text{COOCH}_3 \)

VP[hPa]: 47

- MAK[ml/m³]: 50
- MAK[mg/m³]: 210
- Peak lim: I(2)
- Preg gr: C
- Sens: Sh

N,N’-Methanetetraylbiscyclohexanamine → Dicyclohexylcarbodiimide

Methanol
[67-56-1] \( \text{H}_2\text{COH} \)

VP[hPa]: 128

- MAK[ml/m³]: 100
- MAK[mg/m³]: 130
- Peak lim: II(2)
- Preg gr: C
- Perc abs: H

Methamphetamine 3-chloroallyl chloride
[4080-31-3]

releases formaldehyde

see section Xc

- MAK[mg/m³]: 2 I
- Peak lim: II(2)
- Preg gr: B
- Perc abs: H

Methoxyacetic acid
[625-45-6] \( \text{H}_2\text{CO-CH}_2\text{COOH} \)

VP[hPa]: 1.8

- MAK[ml/m³]: 1
- MAK[mg/m³]: 3.7
- Peak lim: II(2)
- Preg gr: B
- Perc abs: H

2-Methoxyaniline → o-Anisidine
2-Methoxy-2-methylpropane → tert-Butyl methyl ether
1-Methoxy-2-nitrobenzene → 2-Nitroanisole

3-Methoxy-n-butyl acetate
[4435-53-4]

see section IIb

- MAK[ml/m³]: –
- MAK[mg/m³]: –
- Peak lim: –
- Preg gr: –

2-Methoxy-1-propanol
[107-98-2] \( \text{H}_3\text{C} \text{-CHOH-CH}_2\text{OCH}_3 \)

VP[hPa]: 12

- MAK[ml/m³]: 100
- MAK[mg/m³]: 370
- Peak lim: II(2)
- Preg gr: C

2-Methoxy-1-propanol
→ 2-Methoxypropanol-1

Methoxychlor (DMDT)
[72-43-5]

\( \text{H}_3\text{C} \text{-CO-CH}_2\text{Cl} \)

- MAK[mg/m³]: 1 I
- Peak lim: II(8)
- Preg gr: B
- Perc abs: H

2-Methoxyethanol
[109-86-4] \( \text{H}_2\text{COH-CH}_2\text{OH} \)

see section XII

- MAK[ml/m³]: 1
- MAK value applies for the sum of the concentrations of 2-methoxyethanol and 2-methoxyethyl acetate in the air.
- MAK[mg/m³]: 3.2
- Peak lim: II(8)
- Preg gr: B
- Perc abs: H

2-[(2-Methoxyethoxy)ethoxy]ethanol
→ Triethylene glycol monomethyl ether

2-Methoxyethyl acetate
[110-49-6] \( \text{H}_2\text{CO-CH}_2\text{OOC-CH}_3 \)

see section XII

- MAK[ml/m³]: 1
- MAK value applies for the sum of the concentrations of 2-methoxyethanol and 2-methoxyethyl acetate in the air.
- MAK[mg/m³]: 4.9
- Peak lim: II(8)
- Preg gr: B
- Perc abs: H

2-Methoxy-5-methylaniline
→ 5-Methyl-o-anisidine

2-Methoxy-2-methylpropane → tert-Butyl methyl ether

1-Methoxy-2-nitrobenzene → 2-Nitroanisole
2-Methoxypropanol-1

\[1589-47-5\]

\[\text{H}_3\text{C}-\text{O}-\text{OH}\]

\(\text{VP}_{\text{hPa}}: 6\)

\(\text{MAK}[\text{ml/m}^3]: 5\)

MAK value applies for the sum of the concentrations of 2-methoxypropanol-1 and 2-methoxypropylacetate-1 in the air.

\(\text{MAK}[\text{mg/m}^3]: 19\)

Peak lim: I(2)

Preg gr: B

Perc abs: H

2-Methoxy-4-(2-propenyl)phenol → Eugenol

2-Methoxy-4-(1-propenyl)phenol → Isoeugenol

1-Methoxypropyl-2-acetate

\[108-65-6\]

\[\text{H}_3\text{C}-\text{O-CH}_3\]

\(\text{MAK}[\text{ml/m}^3]: 50\)

\(\text{MAK}[\text{mg/m}^3]: 270\)

Peak lim: I(1)

Preg gr: C

2-Methoxypropylacetate-1

\[70657-70-4\]

\[\text{H}_3\text{C}-\text{O-CH}_3\]

\(\text{VP}_{\text{hPa}}: 4.17 \text{ at } 25^\circ\text{C}\)

\(\text{MAK}[\text{ml/m}^3]: 5\)

MAK value applies for the sum of the concentrations of 2-methoxypropanol-1 and 2-methoxypropylacetate-1 in the air.

\(\text{MAK}[\text{mg/m}^3]: 27\)

Peak lim: I(2)

Preg gr: B

Perc abs: H

2-Methoxypropyl-1-acetate

→ 2-Methoxypropylacetate-1

2-Methyl-2,4-pentanediol → Hexylene glycol

Methyl acetate

\[79-20-9\]

\(\text{H}_3\text{C-COOCH}_3\)

\(\text{VP}_{\text{hPa}}: 220\)

MAK value applies for the sum of the concentrations of methyl acetate and methyl acetylene in the air.

\(\text{MAK}[\text{ml/m}^3]: 100\)

\(\text{MAK}[\text{mg/m}^3]: 310\)

Peak lim: I(4)

Preg gr: C

Methyl acetylene

\[74-99-7\]

\(\text{H}_3\text{C-C-CH}\)

see section IIb

\(\text{MAK}[\text{ml/m}^3]: –\)

\(\text{MAK}[\text{mg/m}^3]: –\)

Peak lim: –

Preg gr: –

Methyl acrylate

\[96-33-3\]

\(\text{H}_2\text{C-C-CH}_2\)

\(\text{VP}_{\text{hPa}}: 89\)

\(\text{MAK}[\text{ml/m}^3]: 2\)

\(\text{MAK}[\text{mg/m}^3]: 7.1\)

Peak lim: I(2)

Preg gr: C

Perc abs: H

Sens: Sh

Methylal → Dimethoxymethane

Methyl alcohol → Methanol

2-Methylallyl chloride → 3-Chloro-2-methylpropene

Methylamine

\[74-89-5\]

\(\text{H}_3\text{C-NH}_2\)

\(\text{MAK}[\text{ml/m}^3]: 5\)

\(\text{MAK}[\text{mg/m}^3]: 6.4\)

Peak lim: I(2)

A momentary value of 10 ml/m^3 (13 mg/m^3) should not be exceeded.

Preg gr: C

1-Methyl-2-amino-5-chlorobenzene → 4-Chloro-o-toluidine

4-Methylanilin → p-Toluidine

N-Methylaniline

\[100-61-8\]

Reaction with nitrosating agents can result in the formation of carcinogenic N-nitrosomethylaniline, see Section III "Amines which form carcinogenic nitrosamines on nitrosation".

\(\text{MAK}[\text{ml/m}^3]: 0.5\)

\(\text{MAK}[\text{mg/m}^3]: 2.2\)

Peak lim: II(2)

Preg gr: D

Perc abs: H

Carc cat: 3

5-Methyl-o-anisidine

\[120-71-8\]

The substance can occur simultaneously as vapour and aerosol.

\(\text{VP}_{\text{hPa}}: 0.033 \text{ at } 25^\circ\text{C} (\text{calculated value})\)

\(\text{MAK}[\text{ml/m}^3]: –\)

\(\text{MAK}[\text{mg/m}^3]: –\)

Peak lim: –

Preg gr: –

Carc cat: 3
Methylarsenic compounds
MAK[ml/m³]: –
MAK[mg/m³]: –
Peak lim: –
Preg gr: –
Perc abs: H
Carc cat: 1
Muta cat: 3A

Methyl benzimidazol-2-ylcarbamate
Methyl-1H-benzotriazole
[29385-43-1]

see section IIb and Xc
MAK[ml/m³]: –
MAK[mg/m³]: –
Peak lim: –
Preg gr: –

N-Methyl-bis(2-chloroethyl)amine (nitrogen mustard)
[51-75-2] (ClH₂C=CH₂₂N-CH₃)
MAK[ml/m³]: –
MAK[mg/m³]: –
Peak lim: –
Preg gr: –
Perc abs: H
Sens: Sh
Carc cat: 1
Muta cat: 2

Methyl bromide
[74-83-9] CH₃Br
see section XII
MAK[ml/m³]: 1
MAK[mg/m³]: 3.9
Peak lim: I(2)
Preg gr: C
Carc cat: 3

★ Methyl chloride
[74-87-3] CH₃Cl
VP[hPa]: 5733 at 25°C
MAK[ml/m³]: 10
MAK[mg/m³]: 21
Peak lim: II(1)
Preg gr: D
Methyl chloroacetate → Chloroacetic acid methyl ester
Methyl chloroform → 1,1,1-Trichloroethane
Methyl chloroformate → Chloroformic acid methyl ester

Methyl 2-cyanoacrylate
[137-05-3] H₂C=CCN-CO-CH₃
MAK[ml/m³]: 2
MAK[mg/m³]: 9.2
Peak lim: I(1)
Preg gr: D

Methylcyclohexane
[108-87-2]
VP[hPa]: 48
MAK[ml/m³]: 200
MAK[mg/m³]: 810
Peak lim: II(2)
Preg gr: D

Methylcyclohexanol (all isomers)
[25639-42-3]
see section IIb
MAK[ml/m³]: –
MAK[mg/m³]: –
Peak lim: –
Preg gr: –

1-Methylcyclohexan-2-one
[583-60-8]
see section IIb
MAK[ml/m³]: –
MAK[mg/m³]: –
Peak lim: –
Preg gr: –
Methylcyclopentane → Hexane (all isomers except n-Hexane) and Methylcyclopentane
Methyl demeton → Demeton-methyl

2-Methyl-1,3-butadiene → Isoprene
(2-Methyl-1,3-butadiene)
1-Methylbutyl acetate → Amyl acetate (all isomers)
2-Methylbutyl acetate → Amyl acetate (all isomers)
3-Methylbutyl acetate → Amyl acetate (all isomers)
Methyl-tert-butyl ether → tert-Butyl methyl ether
Methyl butyl ketone → 2-Hexanone
Methyldiethanolamine
[105-59-9]
The substance can occur simultaneously as vapour and aerosol.

\[ \text{H}_3\text{C-}\text{N(CH}_2\text{CH}_2\text{OH)}_2 \]

VP[hPa]: \( 2.7 \times 10^{-4} \text{ at } 25^\circ\text{C} \)
see section IIb and Xc
MAK[ml/m\(^3\)]: –
MAK[mg/m\(^3\)]: –
Peak lim: –
Preg gr: –

4-Methyl-1,3-dioxolan-2-one
[108-32-7]
The substance can occur simultaneously as vapour and aerosol.

\[ \text{O} - \text{O} - \text{CH}_3 \]

VP[hPa]: 0.04
see section Xc
MAK[ml/m\(^3\)]: 2
MAK[mg/m\(^3\)]: 8.5
Peak lim: II(1)
Preg gr: C

Methylene bis(dibutylthiocarbamate)
[10254-57-6]
(inhalable fraction)

see section Xc
MAK[mg/m\(^3\)]: 20 I
Peak lim: II(8)
Preg gr: D

Methylene bis(dibutylthiocarbamate)
[10254-57-6]
(respirable fraction)

see section Xc
MAK[mg/m\(^3\)]: 5 R
Peak lim: II(4)
Preg gr: D

4,4’-Methylene-bis(2-chloroaniline) (MOCA)
[101-14-4]

MAK[ml/m\(^3\)]: –
MAK[mg/m\(^3\)]: –
Peak lim: –
Preg gr: –
Perc abs: H
Carc cat: 2

Methylene-bis(4-cyclohexylisocyanate)
→ 4,4’-Diisocyanato-methylenedicyclophepane

4,4’-Methylene-bis(2,6-di-tert-butylphenol)
[118-82-1]

see section IIb and Xc
MAK[ml/m\(^3\)]: –
MAK[mg/m\(^3\)]: –
Peak lim: –
Preg gr: –

4,4’-Methylenebis(N,N-diglycidylaniline) → Tetraglycidyl-4,4’-methylenedianiline

4,4’-Methylene-bis(N,N-dimethylamine)
[101-61-1]

MAK[ml/m\(^3\)]: –
MAK[mg/m\(^3\)]: –
Peak lim: –
Preg gr: –
Carc cat: 2

4,4’-Methylene-bis(N,N-dimethyl)benzenamine → 4,4’-Methylene-bis(N,N-dimethylaniline)

4,4’-Methylene-bis(2-methylaniline)
[838-88-0]

MAK[ml/m\(^3\)]: –
MAK[mg/m\(^3\)]: –
Peak lim: –
Preg gr: –
Perc abs: H
Carc cat: 2

N,N’-Methylene-bis(5-methyloxazolidine)
[66204-44-2]

see section IIb and Xc
MAK[ml/m\(^3\)]: –
MAK[mg/m\(^3\)]: –
Peak lim: –
Preg gr: –
Sens: Sh

2,2’-(Methylenebis(p-phenyleneoxymethylene)) bisoxirane → Bisphenol F diglycidyl ether
Methylene chloride → Dichloromethane
4,4’-Methylene dianiline → 4,4’-Diaminodiphenylmethane
4,4′-Methylenedimorpholine [5625-90-1]
releases formaldehyde

\[
\text{CH}_2-\text{N} = \text{CH}_2 \rightarrow \text{CH}_2-\text{N} = \text{CH}_2
\]

see section IIb and Xc

\[
\text{MAK}[\text{ml/m}^3]: \text{–}
\]

\[
\text{MAK}[\text{mg/m}^3]: \text{–}
\]

\[
\text{Peak lim: \text{–}}
\]

\[
\text{Preg gr: \text{–}}
\]

\[
\text{Sens: \text{Sh}}
\]

4,4′-Methylene diphenyl disocyanate (MDI) [101-68-8]
(inhalable fraction) see also “polymeric MDI”
The substance can occur simultaneously as vapour and aerosol.

\[
\text{VP[ hPa]: } 7 \times 10^{-6}
\]

see section XII

\[
\text{MAK}[\text{mg/m}^3]: 0.05 \text{ I}
\]

\[
\text{Peak lim: } \text{I(1)}
\]

A momentary value of 0.1 mg/m³ should not be exceeded.

\[
\text{Preg gr: \text{C}}
\]

\[
\text{Perc abs: \text{H}}
\]

\[
\text{Sens: \text{Sah}}
\]

\[
\text{Carc cat: 4}
\]

Methyl ether → Dimethyl ether

2-(1-Methylethoxy)ethanol → 2-Isopropanol

4,4′-(1-Methylethylene)bisphenol → Bisphenol A

Methyl ethyl ketone → 2-Butanone

Methyl ethyl ketone peroxide [1338-23-4]

\[
\text{VP[ hPa]: 2.4}
\]

\[
\text{MAK}[\text{ml/m}^3]: 10
\]

\[
\text{MAK}[\text{mg/m}^3]: 53
\]

\[
\text{Peak lim: } \text{I(2)}
\]

\[
\text{Preg gr: \text{D}}
\]

5-Methyl-3-heptanone [541-85-5]

\[
\text{CH}_3-\text{CH}_2-\text{CO-CH}_2-\text{CH}(\text{CH}_3)-\text{CH}_2-\text{CH}_3
\]

\[
\text{VP[ hPa]: 6}
\]

\[
\text{MAK}[\text{ml/m}^3]: 10
\]

\[
\text{MAK}[\text{mg/m}^3]: 47
\]

\[
\text{Peak lim: } \text{I(2)}
\]

\[
\text{Preg gr: \text{D}}
\]

Methyl-2-hexanone [110-12-3]

\[
\text{CH}_3-\text{CO-CH}_2-\text{CH}_2-\text{CH}(\text{CH}_3)-\text{CH}_3
\]

Methyl iodide [74-88-4]

\[
\text{VPh[ hPa]: } 438
\]

\[
\text{MAK}[\text{ml/m}^3]: \text{–}
\]

\[
\text{MAK}[\text{mg/m}^3]: \text{–}
\]

\[
\text{Peak lim: \text{–}}
\]

\[
\text{Preg gr: \text{–}}
\]

\[
\text{Perc abs: \text{H}}
\]

\[
\text{Carc cat: 2}
\]

Methyl isobutyl carbinol → 4-Methyl-2-pentanol

Methyl isobutyl ketone → Hexone

Methyl isocyanate [624-83-9]

\[
\text{H}_2\text{C-NCO}
\]

\[
\text{VP[ hPa]: 513}
\]

\[
\text{MAK}[\text{ml/m}^3]: 0.01
\]

\[
\text{MAK}[\text{mg/m}^3]: 0.024
\]

\[
\text{Peak lim: } \text{I(1)}
\]

\[
\text{Preg gr: \text{D}}
\]

2-Methyl-4-isothiazolin-3-one [2682-20-4]

\[
\text{S
}\]

see section IIb and Xc

\[
\text{MAK}[\text{ml/m}^3]: \text{–}
\]

\[
\text{MAK}[\text{mg/m}^3]: \text{–}
\]

\[
\text{Peak lim: \text{–}}
\]

\[
\text{Preg gr: \text{–}}
\]

\[
\text{Sens: \text{Sh}}
\]

2-Methyl-4-isothiazolin-3-one → 5-Chloro-2-methyl-2,3-dihydroisothiazol-3-one and 2-Methyl-2,3-dihydroisothiazol-3-one

2-Methylisothiazolone → 2-Methyl-4-isothiazolin-3-one

Methyl glycol acetate → 2-Methoxyethyl acetate

Methyl glycol → 2-Methoxyethanol
**Methyl mercaptan**

[74-93-1] \( \text{H}_3\text{CSH} \)

\( \text{VP}[\text{hPa}]: 1710 \)

- \( \text{MAK}[\text{ml/m}^3]: 0.5 \)
- \( \text{MAK}[\text{mg/m}^3]: 1.0 \)
- \( \text{Peak lim}: \text{I}(1) \)
- \( \text{Preg gr}: \text{D} \)

Methyl mercury → Mercury, organic compounds

Methyl methacrylate → Methacrylic acid methyl ester

2-Methyl-4-[(2-methylphenyl)azo]benzenamine → o-Aminoazotoluene

1-Methyl-3-nitrobenzene → 3-Nitrotoluene

1-Methyl-4-nitrobenzene → 4-Nitrotoluene

2,2′-[[3-Methyl-4-[(4-nitrophenyl)azo]phenyl]-imino]bisethanol → Disperse Red 17

N-Methyl-N-nitrosoaniline → N-Nitrosomethylphenylamine

(Z)-N-Methyl-N-(1-oxo-9-octadecenyl)glycine → Oleyl sarcosine

2-Methylpentane → Hexane (all isomers except \( n \)-Hexane) and Methylcyclopentane

3-Methylpentane → Hexane (all isomers except \( n \)-Hexane) and Methylcyclopentane

2-Methyl-2,4-pentanediol → Hexylene glycol

**4-Methyl-2-pentanol**

[108-11-2] \( (\text{H}_3\text{C})_2\text{CH}-\text{CH}_2-\text{CHOH}-\text{CH}_3 \)

\( \text{VP}[\text{hPa}]: 7 \)

- \( \text{MAK}[\text{ml/m}^3]: 20 \)
- \( \text{MAK}[\text{mg/m}^3]: 85 \)
- \( \text{Peak lim}: \text{I}(1) \)
- \( \text{Preg gr}: \text{D} \)

4-Methyl-2-pentanone → Hexone

2-Methyl-2-penten-4-one → 4-Methyl-3-penten-2-one

**4-Methyl-3-penten-2-one**

[141-79-7] \( (\text{H}_3\text{C})_2\text{C}=\text{CH-CO}-\text{CH}_3 \)

\( \text{VP}[\text{hPa}]: 19.31 \text{ at } 25^\circ \text{C} \)

- \( \text{MAK}[\text{ml/m}^3]: 2 \)
- \( \text{MAK}[\text{mg/m}^3]: 8.1 \)
- \( \text{Peak lim}: \text{I}(2) \)
- \( \text{Preg gr}: \text{D} \)
- \( \text{Perc abs}: \text{H} \)

2-[(2-Methylphenoxy)-methyl]oxirane → Cresyl glycidyl ether

4-Methylphenyl diiodomethyl sulfone → 4-(Diiodomethylsulfonyl)-toluene

Methylphenyl diphenyl phosphate → Diphenyl cresyl phosphate

2-Methyl-1-propanamine → Isobutylamine

**2-Methyl-2-propanethiol**

[75-66-1]

\( \text{H}_3\text{C}-\text{CH}_2-\text{CH}_3 \)

\( \text{VP}[\text{hPa}]: 241 \)

- \( \text{MAK}[\text{ml/m}^3]: 1 \)
- \( \text{MAK}[\text{mg/m}^3]: 3.74 \)
- \( \text{Peak lim}: \text{II}(2) \)
- \( \text{Preg gr}: \text{C} \)
- \( \text{Perc abs}: \text{H} \)
- \( \text{Sens}: \text{Sh} \)

2-Methyl-2-propenoic acid 1,2-ethanediyl ester → Ethylene glycol dimethacrylate

2-Methyl-2-propenoic acid 2-hydroxyethyl ester → 2-Hydroxyethyl methacrylate

2-Methyl-2-propenoic acid 2-hydroxypropyl ester → Methacrylic acid 2-hydroxypropyl ester

Methyl propyl ketone → 2-Pentanone

**1-Methylpyrene**

[2381-21-7]

see Section III, “pyrolysis products of organic materials”

- \( \text{MAK}[\text{ml/m}^3]: - \)
- \( \text{MAK}[\text{mg/m}^3]: - \)
- \( \text{Peak lim}: - \)
- \( \text{Preg gr}: - \)
- \( \text{Perc abs}: \text{H} \)
- \( \text{Carc cat}: 2 \)

**N-Methyl-2-pyrrolidone**

[872-50-4] (vapour)

The substance can occur simultaneously as vapour and aerosol.

\( \text{VP}[\text{hPa}]: 0.32 \)

see section XII

- \( \text{MAK}[\text{ml/m}^3]: 20 \)
- \( \text{MAK}[\text{mg/m}^3]: 82 \)
- \( \text{Peak lim}: \text{I}(2) \)
- \( \text{Preg gr}: \text{C} \)
- \( \text{Perc abs}: \text{H} \)
α-Methyl styrene
[98-83-9]

VP[hPa]: 3
MAK[ml/m³]: 50
MAK[mg/m³]: 250
Peak lim: I(2)
Preg gr: D

Methyl styrene (all isomers)
[25013-15-4]
2-Methylstyrene [611-15-4]
3-Methylstyrene [100-80-1]
4-Methylstyrene [622-97-9]
VP[hPa]: 1.5-2
MAK[ml/m³]: 20
MAK[mg/m³]: 98
Peak lim: I(2)
Preg gr: D

Methyltetrahydrophthalic anhydride
[11070-44-3]
see section IV
Sens: Sa

N-Methyl-N,2,4,6-tetranitroaniline
[479-45-8]

MAK[ml/m³]: –
MAK[mg/m³]: –
Peak lim: –
Perc abs: H
Sens: Sh
Carc cat: 3

Methyltin compounds
(as Sn [7440-31-5])

– Monomethyltin compounds
The substance can occur simultaneously as vapour and aerosol.
MAK[ml/m³]: 0.004
MAK[mg/m³]: 0.02
Peak lim: I(1)
Preg gr: C
Sens: –
For methyltin compounds whose organic ligands were already designated with “Sa” or “Sh”, these designations also apply.

– except
– Methyltin tris(isooctylmercaptaacetate)
(MMT(IOMA)₃)
[54849-38-6]
The substance can occur simultaneously as vapour and aerosol.
VP[hPa]: 0.02 at 25°C
MAK[ml/m³]: 0.2
MAK[mg/m³]: 1
Peak lim: II(2)
Preg gr: B
Sens: –
For methyltin compounds whose organic ligands were already designated with “Sa” or “Sh”, these designations also apply.

– a n d
– Bis[methyltin di(isooctylmercaptaacetate)]sulfide
– a n d
– Bis[methyltin di(2-mercaptoethyloleate)]sulfide
[59118-99-9]

– Dimethyltin compounds
The substance can occur simultaneously as vapour and aerosol.
MAK[ml/m³]: 0.004
MAK[mg/m³]: 0.02
Peak lim: I(1)
Preg gr: C
Sens: –
For methyltin compounds whose organic ligands were already designated with “Sa” or “Sh”, these designations also apply.

– except
– Dimethyltin bis(isooctylmercaptaacetate) (DMT)
(IOMA)₂
[26636-01-1]
The substance can occur simultaneously as vapour and aerosol.
VP[hPa]: 4.4×10⁻³ at 25°C
MAK[ml/m³]: 0.01
MAK[mg/m³]: 0.05
Peak lim: II(2)
Preg gr: C
For methyltin compounds whose organic ligands were already designated with “Sa” or “Sh”, these designations also apply.

- **Dimethyltin bis(2-ethylhexylmercaptoacetate) (DMT(2-EHMA))**
  - VP[\(\text{hPa}\)]: \(4.4 \times 10^{-3}\) at 25°C

- **Bis(dimethyltin(isooctylmercaptoacetate))sulfide**

- **Bis(dimethyltin(2-mercaptoethyloleate))sulfide**

- **Trimethyltin compounds**
The substance can occur simultaneously as vapour and aerosol.

- **Tetramethyltin**
  - VP[\(\text{hPa}\)]: 147 at 25°C

**Methyl tribromide → Tribromomethane**

**Methyldiglycol → Triethylene glycol monomethyl ether**

**Methyl vinyl ether**
- VP[\(\text{hPa}\)]: 1756
- MAK[\(\text{ml/m}^3\)]: 0.001
- MAK[\(\text{mg/m}^3\)]: 0.005
- Peak lim: II(4)
- Preg gr: D
- Perc abs: H

**Methyl vinyl ketone**
- MAK[\(\text{mg/m}^3\)]: –
- Peak lim: –
- Preg gr: –
- Perc abs: H
- Sens: Sh

**Mevinphos**
- [7786-34-7]
- see documentation "Phosdrin". The substance can occur simultaneously as vapour and aerosol.

**Michler’s ketone**
- [90-94-8]

**Microbial rennets: endothiapepsin and mucorpepsin**
- see section IV

**Mineral oils (petroleum), severely refined**
- MAK[\(\text{mg/m}^3\)]: 5R

**Mist**
- see section V

**Molybdocene dichloride**

**Molybdenum**
- [7439-98-7]
- and its compounds apart from molybdenum trioxide
- see section IIb and XII

**Molybdenum(VI) oxide → Molybdenum trioxide**

**Molybdic anhydride → Molybdenum trioxide**

**Molybdic trioxide → Molybdenum trioxide**
Monochloroacetic acid
[79-11-8]
see also Sodium monochloroacetate
The substance can occur simultaneously as vapour and aerosol. See also Sodium monochloroacetate.
\[ \text{ClCH}_2\text{COOH} \]


\[
\text{VP[hPa]: 0.021}
\]

\[
\text{MAK[ml/m}^3\text{]: 0.5}
\]

\[
\text{MAK[mg/m}^3\text{]: 2.0}
\]

\[
\text{Peak lim: I(2)}
\]

\[
\text{Preg gr: C}
\]


Monochlorodifluoromethane
\[ \rightarrow \text{Chlorodifluoromethane (FC-22)} \]

Monochlorodimethyl ether
[107-30-2]
The classification in Category 1 applies to technical monochlorodimethyl ether which can be contaminated with up to 7% bischloromethyl ether.

\[
\text{VP[hPa]: 213}
\]

\[
\text{MAK[ml/m}^3\text{]: –}
\]

\[
\text{MAK[mg/m}^3\text{]: –}
\]

\[
\text{Peak lim: –}
\]

\[
\text{Preg gr: –}
\]

\[
\text{Carc cat: 1}
\]

Monochloronaphthalenes \[ \rightarrow \text{Chlorinated naphthalenes} \]

Monocyclic aromatic amino and nitro compounds
see section III


Monoisopropanolamine \[ \rightarrow 1\text{-Amino-2-propanol} \]


★ Monomethylhydrazine
[60-34-4]
\[ \text{H}_3\text{C-NH-NH}_2 \]

\[
\text{VP[hPa]: 66.66 at 25°C}
\]

\[
\text{MAK[ml/m}^3\text{]: –}
\]

\[
\text{MAK[mg/m}^3\text{]: –}
\]

\[
\text{Peak lim: –}
\]

\[
\text{Preg gr: –}
\]

\[
\text{Perc abs: H}
\]

\[
\text{Sens: Sh}
\]

\[
\text{Carc cat: 2}
\]

\[
\text{Muta cat: 3B}
\]

Monomethyltin compounds \[ \rightarrow \text{Methyltin compounds} \]


Mono-n-octyltin compounds \[ \rightarrow \text{n-Octyltin compounds} \]


Montmorillonite
[1318-93-0]
and Bentonite [1302-78-9]
quartz content must be considered separately

\[
\text{Na}_{0.12}\text{(Al}_{1.2}\text{Mg}_{0.8}\text{(OH)}_2\text{Si}_{10}\text{O}_{22})\cdot nH}_2\text{O}
\]

see section IIb

\[
\text{MAK[ml/m}^3\text{]: –}
\]

\[
\text{MAK[mg/m}^3\text{]: –}
\]

\[
\text{Peak lim: –}
\]

\[
\text{Preg gr: –}
\]


Morpholine
[110-91-8]
Use in metal-working fluids is not permitted: see TRGS 611.

\[
\text{Reaction with nitrosating agents can result in the formation of carcinogenic N-nitrosomorpholine, see Section III “Amines which form carcinogenic nitrosamines on nitrosation”.
}\]

\[
\text{VP[hPa]: 10}
\]

\[
\text{MAK[ml/m}^3\text{]: 10}
\]

\[
\text{MAK[mg/m}^3\text{]: 36}
\]

\[
\text{Peak lim: I(2)}
\]

\[
\text{Preg gr: D}
\]


2-(Morpholinothio)benzothiazole
\[ \rightarrow 2\text{-}(4\text{-Morpholinymercapto)benzothiazole} \]

Morpholinyl carbonyl chloride
\[ \rightarrow \text{N-Chloroformylmorpholine} \]


2-(4-Morpholinymercapto)benzothiazole
[102-77-2]

\[
\text{see section IIb}
\]

\[
\text{MAK[ml/m}^3\text{]: –}
\]

\[
\text{MAK[mg/m}^3\text{]: –}
\]

\[
\text{Peak lim: –}
\]

\[
\text{Preg gr: –}
\]

\[
\text{Sens: Sh}
\]


Mucorpepsin \[ \rightarrow \text{Microbial rennets: endothiapepsin and mucorpepsin} \]


Myristic acid
[544-63-8]
\[ \text{CH}_3\text{-(CH}_2\text{)}_{12}\text{COOH} \]

\[
\text{see section IIb and Xc}
\]

\[
\text{MAK[ml/m}^3\text{]: –}
\]

\[
\text{MAK[mg/m}^3\text{]: –}
\]

\[
\text{Peak lim: –}
\]

\[
\text{Preg gr: –}
\]


Naled
[300-76-5]

\[
\text{MAK[mg/m}^3\text{]: 0.5 I}
\]

\[
\text{Peak lim: II(2)}
\]

\[
\text{Preg gr: C}
\]

\[
\text{Perc abs: H}
\]

\[
\text{Sens: SH}
\]


Naphtha (petroleum)
hydroreated, heavy
[64742-48-9]

\[
\text{see section Xc}
\]

\[
\text{MAK[ml/m}^3\text{]: 50}
\]

\[
\text{MAK[mg/m}^3\text{]: 300}
\]

\[
\text{Peak lim: II(2)}
\]

\[
\text{Preg gr: D}
\]


Naphthalene \[ \rightarrow \text{Decahydonaphthalene} \]
**Naphthalene**  
[91-20-3]

The substance can occur simultaneously as vapour and aerosol.

\[
\begin{align*}
\text{VP [hPa]} & : 0.04 \\
\text{see Section III, “pyrolysis products of organic materials”}
\end{align*}
\]

\[
\begin{align*}
\text{MAK [ml/m}^3\text{]} : & - \\
\text{MAK [mg/m}^3\text{]} : & - \\
\text{Peak lim} : & - \\
\text{Preg gr} : & - \\
\text{Perc abs} : & \text{H} \\
\text{Carc cat} : & 2 \\
\text{Muta cat} : & 3\text{B}
\end{align*}
\]

**1,8-Naphthalic anhydride**  
[81-84-5]

\[
\begin{align*}
\text{see section V}
\end{align*}
\]

Sens: Sh

**Naphthenic acids and sodium, calcium, potassium napthenates**  
[1338-24-5; 61790-13-4; 61789-36-4; 66072-08-0]  
(technical mixtures)

\[
\begin{align*}
\text{see section Xc}
\end{align*}
\]

\[
\begin{align*}
\text{MAK [ml/m}^3\text{]} : & - \\
\text{MAK [mg/m}^3\text{]} : & - \\
\text{Peak lim} : & - \\
\text{Preg gr} : & - \\
\text{Perc abs} : & \text{H} \\
\text{Carc cat} : & 3
\end{align*}
\]

**2-Naphthylamine**  
[91-59-8]

The substance can occur simultaneously as vapour and aerosol.

\[
\begin{align*}
\text{VP [hPa]} : 3.4\times10^{-4} \text{ at } 25^\circ\text{C}
\end{align*}
\]

\[
\begin{align*}
\text{see section XII}
\end{align*}
\]

\[
\begin{align*}
\text{MAK [ml/m}^3\text{]} : & - \\
\text{MAK [mg/m}^3\text{]} : & - \\
\text{Peak lim} : & - \\
\text{Preg gr} : & - \\
\text{Perc abs} : & \text{H} \\
\text{Carc cat} : & 1 \\
\text{Muta cat} : & 3\text{A}
\end{align*}
\]

**1,5-Naphthylene diisocyanate**  
[3173-72-6]

The substance can occur simultaneously as vapour and aerosol.

\[
\begin{align*}
\text{see section XII}
\end{align*}
\]

\[
\begin{align*}
\text{MAK [ml/m}^3\text{]} : & - \\
\text{MAK [mg/m}^3\text{]} : & - \\
\text{Peak lim} : & - \\
\text{Preg gr} : & - \\
\text{Sens} : & \text{Sa} \\
\text{Carc cat} : & 3
\end{align*}
\]

**1-Naphthylthiourea**  
[86-88-4]

\[
\begin{align*}
\text{Sens} : & \text{Sh}
\end{align*}
\]

**Natural latex → Natural rubber latex**

**Natural rubber → Natural rubber latex**

**Natural rubber latex**  
[9006-04-6]

\[
\begin{align*}
\text{see section IV}
\end{align*}
\]

Sens: Sah

**Nemalite**  
[1317-43-7]

\[
\begin{align*}
\text{see section III}
\end{align*}
\]

\[
\begin{align*}
\text{MAK [ml/m}^3\text{]} : & - \\
\text{MAK [mg/m}^3\text{]} : & - \\
\text{Peak lim} : & - \\
\text{Preg gr} : & - \\
\text{Carc cat} : & 3
\end{align*}
\]

\[
\begin{align*}
\text{Mg(OH)}_2
\end{align*}
\]
Nickel and nickel compounds
(inhalable fraction)

Regarding compounds which have been found to be unequivocally carcinogenic in man, see Toxikologisch-arbeitsmedizinische Begründung von MAK-Werten, available from the publisher: Wiley-VCH, D-69451 Weinheim.

see section XII

MAK[ml/m³]: –
MAK[mg/m³]: –
Peak lim: –
Preg gr: –
Sens: Sah

There is sufficient evidence of sensitizing effects on the respiratory tract only for water-soluble nickel compounds. Carc cat: 1

– Metallic nickel
[7440-02-0] Ni

– Nickel acetate
[373-02-4] Ni(OOCC₂H₅)
and similar soluble salts

– Nickel carbonate
[3333-67-3] NiCO₃

– Nickel chloride
[7718-54-9] NiCl₂

– Nickel monoxide
[1313-99-1] NiO

– Nickel dioxide
[12035-36-8] NiO₂

– Nickel sesquisulfide
[1314-06-3] Ni₃S₂

– Nickel hydroxide
[12054-48-7] Ni(OH)₂

– Nickel sulfide
[16812-54-7] NiS

– Nickel subsulfide
[12035-72-2] Ni₃S₂

– Nickel sulfate
[7786-81-4] NiSO₄

Nickel alloys

Sens: –
For nickel alloys containing bio-available nickel see Nickel and nickel compounds.

Nickel titanic yellow pigment
[8007-18-9] (Ti₆S₇NiO₉)

see section IIb

MAK[ml/m³]: –
MAK[mg/m³]: –
Peak lim: –
Preg gr: –

Nicotine
[54-11-5]

The substance can occur simultaneously as vapour and aerosol.

VP[hPa]: 0.056

see section Iib

MAK[ml/m³]: –
MAK[mg/m³]: –
Peak lim: –
Preg gr: –
Perc abs: H

Nitric acid
[7697-37-2] HNO₃

see section Iib

MAK[ml/m³]: –
MAK[mg/m³]: –
Peak lim: –
Preg gr: –

Nitrilotriacetic acid
[139-13-9]
and its sodium salts
Avoid simultaneous exposure to iron compounds (formation of FeNTA)

MAK[mg/m³]: 2
as acid
Peak lim: II(4)
Preg gr: C
Carc cat: 4

– Monosodium nitrilotriacetate
[18994-66-6]

– Disodium nitrilotriacetate
[15467-20-6]

– Disodium nitrilotriacetate monohydrate
[23255-03-0]

– Trisodium nitrilotriacetate
[5064-31-3]

– Trisodium nitrilotriacetate monohydrate
[18662-53-8]

5-Nitroacenaphthene
[602-87-9]
The substance can occur simultaneously as vapour and aerosol.

VP[hPa]: 3.6×10⁻⁵ at 25°C (calculated value)

MAK[ml/m³]: –
MAK[mg/m³]: –
Peak lim: –
Preg gr: –
Carc cat: 2
4-Nitro-4′-aminodiphenylamine-2-sulfonic acid
[91-29-2]

see section IV
Sens: Sh

2-Nitro-4-aminophenol
[119-34-6]

MAK [ml/m³]: –
MAK [mg/m³]: –
Peak lim: –
Preg gr: –
Perc abs: H
Carc cat: 3

2-Nitro-2-aminotoluene → 5-Nitro-o-toluidine

4-Nitroaniline
[100-01-6]

MAK [ml/m³]: –
MAK [mg/m³]: –
Peak lim: –
Preg gr: –
Perc abs: H
Carc cat: 3

2-Nitroanisole
[91-23-6]
The substance can occur simultaneously as vapour and aerosol.

VP [hPa]: 4.8×10⁻³ at 25°C
MAK [ml/m³]: –
MAK [mg/m³]: –
Peak lim: –
Preg gr: –
Perc abs: 2
Carc cat: 3

Nitrobenzene
[98-95-3]
The substance can occur simultaneously as vapour and aerosol.

VP [hPa]: 0.3
see section XII
MAK [ml/m³]: 0.1
MAK [mg/m³]: 0.51
Peak lim: II(4)
Preg gr: C
Perc abs: H
Carc cat: 4

2-Nitro-1,4-benzenediamine
→ 2-Nitro-p-phenylenediamine

3-Nitrobenzoic acid
[121-92-6]

VP [hPa]: 5×10⁻³ at 25°C (calculated value)
see section IIb and Xc
MAK [ml/m³]: –
MAK [mg/m³]: –
Peak lim: –
Preg gr: –
Perc abs: H
Carc cat: 3

4-Nitrobenzoic acid
[62-23-7]

MAK [mg/m³]: 1.1
Peak lim: I(2)
Preg gr: D
Carc cat: 3

4-Nitroaniline → 4-Nitro-2-aminophenol

4-(2-Nitrobutyl)morpholine (70% w/w) and
4,4′-(2-Ethyl-2-nitro-1,3-propandiyl)bis-morpholin (20% w/w)
[2224-44-4; 1854-23-5]
(mixture)
In this mixture formaldehyde can be released and nitrosamines formed. Use forbidden as component of metal-working fluids and corrosion inhibitors: see “GefStoffV 2010, Anhang II (zu §16 Absatz 2), Nr. 4”.

see section Xc
MAK [ml/m³]: 0.5
MAK [mg/m³]: 4.2
Peak lim: I(2)
Preg gr: D
Sens: Sh

o-Nitrochlorobenzene → o-Chloronitrobenzene
m-Nitrochlorobenzene → m-Chloronitrobenzene
p-Nitrochlorobenzene → p-Chloronitrobenzene

4-Nitrocumene
[1817-47-6]
The substance can occur simultaneously as vapour and aerosol.

VP [hPa]: 0.02 at 25°C (calculated value)
see section IV
Sens: Sh
4-Nitrodiphenyl → 4-Nitrobiphenyl

**Nitroethane**

[79-24-3] \( \text{H}_2\text{C}-\text{CH}_2\text{-NO}_2 \)

\( \text{VP(hPa)}: 20.8 \)

\( \text{MAK}[\text{ml/m}^3]: 10 \)

\( \text{MAK}[\text{mg/m}^3]: 31 \)

\( \text{Peak lim: I(4)} \)

\( \text{Preg gr: D} \)

\( \text{Perc abs: H} \)

4-Nitro-4’-[N-ethyl-N-(2-hydroxyethyl)-amino]azobenzene → Disperse Red 1

**Nitrogen dioxide**

[10102-44-0] \( \text{NO}_2 \)

\( \text{VP(hPa)}: 960 \)

\( \text{MAK}[\text{ml/m}^3]: 0.5 \)

\( \text{MAK}[\text{mg/m}^3]: 0.95 \)

\( \text{Peak lim: I(1)} \)

\( \text{Preg gr: D} \)

\( \text{Carc cat: 3} \)

**Nitrogen monoxide**

[10102-43-9] \( \text{NC} \)

\( \text{MAK}[\text{ml/m}^3]: 0.5 \)

\( \text{MAK}[\text{mg/m}^3]: 0.63 \)

\( \text{Peak lim: I(2)} \)

\( \text{Preg gr: D} \)

**Nitrogen oxide → Nitrous oxide**

**Nitroglycerin**

[55-63-0]

\( \text{see section XII} \)

\( \text{MAK}[\text{ml/m}^3]: 0.01 \)

\( \text{MAK value applies for the sum of the concentrations of ethylene glycol dinitrate, nitroglycerin and propylene glycol dinitrate in the air.} \)

\( \text{MAK}[\text{mg/m}^3]: 0.094 \)

\( \text{Peak lim: I(1)} \)

\( \text{Preg gr: C} \)

\( \text{Perc abs: H} \)

\( \text{Carc cat: 3} \)

Nitroglycol → Ethylene glycol dinitrate

**Nitromethane**

[75-52-5] \( \text{H}_3\text{C}-\text{NO}_2 \)

\( \text{VP(hPa)}: 37 \)

\( \text{Peak lim: –} \)

\( \text{Preg gr: –} \)

\( \text{Perc abs: H} \)

\( \text{Carc cat: 3} \)

1-Nitronaphthalene

[86-57-7]

The substance can occur simultaneously as vapour and aerosol.

1-Nitronaphthalene

[86-57-7]

The substance can occur simultaneously as vapour and aerosol.

2-Nitronaphthalene

[581-89-5]

The substance can occur simultaneously as vapour and aerosol.

4-(4-Nitrophenylazo)aniline → Disperse Orange 3

2-Nitro-p-phenylenediamine

[5307-14-2]

\( \text{H}_2\text{N}-\text{(NO}_2)\text{-NH}_2 \)

\( \text{MAK}[\text{ml/m}^3]: – \)

\( \text{MAK}[\text{mg/m}^3]: – \)

\( \text{Peak lim: –} \)

\( \text{Preg gr: –} \)

\( \text{Perc abs: H} \)

\( \text{Sens: Sh} \)

\( \text{Carc cat: 3} \)

1-Nitropropane

[108-03-2]

Technical products measurably contaminated with 2-nitropropane, see 2-Nitropropane.

2-Nitropropane

[79-46-9]

\( \text{VP(hPa)}: 17 \)

\( \text{MAK}[\text{ml/m}^3]: – \)

\( \text{MAK}[\text{mg/m}^3]: – \)

\( \text{Peak lim: –} \)

\( \text{Preg gr: –} \)

\( \text{Perc abs: H} \)

\( \text{Carc cat: 2} \)
Nitropyrenes (Mono-, Di-, Tri-, Tetra-) (isomers)

\[ C_{16}H_{10+n}(NO_2)_n; \quad n = 1 - 4 \]

- MAK [ml/m³]: –
- MAK [mg/m³]: –
- Peak lim: –
- Preg gr: –
- Carc cat: 3

Nitrosamines (formed from amines)

see section III

- N-Nitroso-bis(2-hydroxyethyl)amine → N-Nitrosodiethanolamine
- N-Nitroso-cyclohexylhydroxylamine, potassium salt → Cyclohexylhydroxydiazene-1-oxide, potassium salt

N-Nitrosodi-n-butylamine

[924-16-3]
The substance can occur simultaneously as vapour and aerosol.

- VP [hPa]: 0.06 at 25°C
- MAK [ml/m³]: –
- MAK [mg/m³]: –
- Peak lim: –
- Preg gr: –
- Perc abs: H
- Carc cat: 2

N-Nitrosodimethylamine

[601-77-9]
The substance can occur simultaneously as vapour and aerosol.

- VP [hPa]: 0.35 at 25°C (calculated value)
- MAK [ml/m³]: –
- MAK [mg/m³]: –
- Peak lim: –
- Preg gr: –
- Perc abs: H
- Carc cat: 2

N-Nitrosodiisopropylamine

[621-64-7]
The substance can occur simultaneously as vapour and aerosol.

- VP [hPa]: 0.12 at 25°C (calculated value)
- MAK [ml/m³]: –
- MAK [mg/m³]: –
- Peak lim: –
- Preg gr: –
- Perc abs: H
- Carc cat: 2

N-Nitrosodiethanolamine

[1116-54-7]

- MAK [ml/m³]: –
- MAK [mg/m³]: –
- Peak lim: –
- Preg gr: –
- Perc abs: H
- Carc cat: 2

N-Nitrosodiphenylamine

[86-30-6]

- MAK [ml/m³]: –
- MAK [mg/m³]: –
- Peak lim: –
- Preg gr: –
- Perc abs: H
- Carc cat: 2

N-Nitrosodi-n-propylamine

[621-64-7]
The substance can occur simultaneously as vapour and aerosol.

Nitrosaminationes (formed from amines)

see section III

- N-Nitroso-bis(2-hydroxyethyl)amine → N-Nitrosodiethanolamine
- N-Nitroso-cyclohexylhydroxylamine, potassium salt → Cyclohexylhydroxydiazene-1-oxide, potassium salt

N-Nitrosodi-n-butylamine

[924-16-3]
The substance can occur simultaneously as vapour and aerosol.

- VP [hPa]: 0.06 at 25°C
- MAK [ml/m³]: –
- MAK [mg/m³]: –
- Peak lim: –
- Preg gr: –
- Perc abs: H
- Carc cat: 2

N-Nitrosodimethylamine

[601-77-9]
The substance can occur simultaneously as vapour and aerosol.

- VP [hPa]: 0.35 at 25°C (calculated value)
- MAK [ml/m³]: –
- MAK [mg/m³]: –
- Peak lim: –
- Preg gr: –
- Perc abs: H
- Carc cat: 2

N-Nitrosodiisopropylamine

[621-64-7]
The substance can occur simultaneously as vapour and aerosol.

- VP [hPa]: 0.12 at 25°C (calculated value)
- MAK [ml/m³]: –
- MAK [mg/m³]: –
- Peak lim: –
- Preg gr: –
- Perc abs: H
- Carc cat: 2

Nitrosaminationes (formed from amines)

see section III

- N-Nitroso-bis(2-hydroxyethyl)amine → N-Nitrosodiethanolamine
- N-Nitroso-cyclohexylhydroxylamine, potassium salt → Cyclohexylhydroxydiazene-1-oxide, potassium salt

N-Nitrosodi-n-butylamine

[924-16-3]
The substance can occur simultaneously as vapour and aerosol.

- VP [hPa]: 0.06 at 25°C
- MAK [ml/m³]: –
- MAK [mg/m³]: –
- Peak lim: –
- Preg gr: –
- Perc abs: H
- Carc cat: 2

N-Nitrosodimethylamine

[601-77-9]
The substance can occur simultaneously as vapour and aerosol.

- VP [hPa]: 0.35 at 25°C (calculated value)
- MAK [ml/m³]: –
- MAK [mg/m³]: –
- Peak lim: –
- Preg gr: –
- Perc abs: H
- Carc cat: 2

N-Nitrosodiisopropylamine

[621-64-7]
The substance can occur simultaneously as vapour and aerosol.

- VP [hPa]: 0.12 at 25°C (calculated value)
- MAK [ml/m³]: –
- MAK [mg/m³]: –
- Peak lim: –
- Preg gr: –
- Perc abs: H
- Carc cat: 2

Nitrosaminationes (formed from amines)

see section III

- N-Nitroso-bis(2-hydroxyethyl)amine → N-Nitrosodiethanolamine
- N-Nitroso-cyclohexylhydroxylamine, potassium salt → Cyclohexylhydroxydiazene-1-oxide, potassium salt

N-Nitrosodi-n-butylamine

[924-16-3]
The substance can occur simultaneously as vapour and aerosol.

- VP [hPa]: 0.06 at 25°C
- MAK [ml/m³]: –
- MAK [mg/m³]: –
- Peak lim: –
- Preg gr: –
- Perc abs: H
- Carc cat: 2

N-Nitrosodimethylamine

[601-77-9]
The substance can occur simultaneously as vapour and aerosol.

- VP [hPa]: 0.35 at 25°C (calculated value)
- MAK [ml/m³]: –
- MAK [mg/m³]: –
- Peak lim: –
- Preg gr: –
- Perc abs: H
- Carc cat: 2

N-Nitrosodiisopropylamine

[621-64-7]
The substance can occur simultaneously as vapour and aerosol.

- VP [hPa]: 0.12 at 25°C (calculated value)
- MAK [ml/m³]: –
- MAK [mg/m³]: –
- Peak lim: –
- Preg gr: –
- Perc abs: H
- Carc cat: 2

Nitrosaminationes (formed from amines)

see section III

- N-Nitroso-bis(2-hydroxyethyl)amine → N-Nitrosodiethanolamine
- N-Nitroso-cyclohexylhydroxylamine, potassium salt → Cyclohexylhydroxydiazene-1-oxide, potassium salt

N-Nitrosodi-n-butylamine

[924-16-3]
The substance can occur simultaneously as vapour and aerosol.

- VP [hPa]: 0.06 at 25°C
- MAK [ml/m³]: –
- MAK [mg/m³]: –
- Peak lim: –
- Preg gr: –
- Perc abs: H
- Carc cat: 2

N-Nitrosodimethylamine

[601-77-9]
The substance can occur simultaneously as vapour and aerosol.

- VP [hPa]: 0.35 at 25°C (calculated value)
- MAK [ml/m³]: –
- MAK [mg/m³]: –
- Peak lim: –
- Preg gr: –
- Perc abs: H
- Carc cat: 2

N-Nitrosodiisopropylamine

[621-64-7]
The substance can occur simultaneously as vapour and aerosol.

- VP [hPa]: 0.12 at 25°C (calculated value)
- MAK [ml/m³]: –
- MAK [mg/m³]: –
- Peak lim: –
- Preg gr: –
- Perc abs: H
- Carc cat: 2

Nitrosaminationes (formed from amines)

see section III

- N-Nitroso-bis(2-hydroxyethyl)amine → N-Nitrosodiethanolamine
- N-Nitroso-cyclohexylhydroxylamine, potassium salt → Cyclohexylhydroxydiazene-1-oxide, potassium salt

N-Nitrosodi-n-butylamine

[924-16-3]
The substance can occur simultaneously as vapour and aerosol.

- VP [hPa]: 0.06 at 25°C
- MAK [ml/m³]: –
- MAK [mg/m³]: –
- Peak lim: –
- Preg gr: –
- Perc abs: H
- Carc cat: 2

N-Nitrosodimethylamine

[601-77-9]
The substance can occur simultaneously as vapour and aerosol.

- VP [hPa]: 0.35 at 25°C (calculated value)
- MAK [ml/m³]: –
- MAK [mg/m³]: –
- Peak lim: –
- Preg gr: –
- Perc abs: H
- Carc cat: 2

N-Nitrosodiisopropylamine

[621-64-7]
The substance can occur simultaneously as vapour and aerosol.

- VP [hPa]: 0.12 at 25°C (calculated value)
- MAK [ml/m³]: –
- MAK [mg/m³]: –
- Peak lim: –
- Preg gr: –
- Perc abs: H
- Carc cat: 2

N-Nitrosodi-n-propylamine

[621-64-7]
The substance can occur simultaneously as vapour and aerosol.

- VP [hPa]: 0.12 at 25°C (calculated value)
- MAK [ml/m³]: –
- MAK [mg/m³]: –
- Peak lim: –
- Preg gr: –
- Perc abs: H
- Carc cat: 2

Nitrosoethylaniline

→ N-Nitrosoethylphenylamine
N-Nitrosoethylphenylamine
[612-64-6]

\[ \text{N-Nitrosoethylphenylamine} \]

\[ \text{(612-64-6)} \]

\[ \begin{align*}
\text{MAK}[\text{ml/m}^3] & : - \\
\text{MAK}[\text{mg/m}^3] & : - \\
\text{Peak lim} & : - \\
\text{Preg gr} & : - \\
\text{Perc abs} & : \text{H} \\
\text{Carc cat} & : 2
\end{align*} \]

Nitrosomethylaniline → N-Nitrosomethylphenylamine

N-Nitrosomethylethylamine
[10595-95-6]

\[ \text{N-Nitrosomethylethylamine} \]

\[ \text{(10595-95-6)} \]

\[ \begin{align*}
\text{MAK}[\text{ml/m}^3] & : - \\
\text{MAK}[\text{mg/m}^3] & : - \\
\text{Peak lim} & : - \\
\text{Preg gr} & : - \\
\text{Perc abs} & : \text{H} \\
\text{Carc cat} & : 2
\end{align*} \]

N-Nitrosomethylphenylamine
[614-00-6]

\[ \text{N-Nitrosomethylphenylamine} \]

\[ \text{(614-00-6)} \]

\[ \begin{align*}
\text{MAK}[\text{ml/m}^3] & : - \\
\text{MAK}[\text{mg/m}^3] & : - \\
\text{Peak lim} & : - \\
\text{Preg gr} & : - \\
\text{Perc abs} & : \text{H} \\
\text{Carc cat} & : 2
\end{align*} \]

N-Nitrosomorpholine
[59-89-2]

The substance can occur simultaneously as vapour and aerosol.

\[ \text{N-Nitrosomorpholine} \]

\[ \text{(59-89-2)} \]

\[ \text{VP}[\text{hPa}]: 0.05 \text{ at } 25°C \text{ (calculated value)} \]

\[ \begin{align*}
\text{MAK}[\text{ml/m}^3] & : - \\
\text{MAK}[\text{mg/m}^3] & : - \\
\text{Peak lim} & : - \\
\text{Preg gr} & : - \\
\text{Perc abs} & : \text{H} \\
\text{Carc cat} & : 2
\end{align*} \]

N-Nitrosopyrrolidine
[930-55-2]

The substance can occur simultaneously as vapour and aerosol.

\[ \text{N-Nitrosopyrrolidine} \]

\[ \text{(930-55-2)} \]

\[ \text{VP}[\text{hPa}]: 0.12 \text{ at } 25°C \text{ (calculated value)} \]

\[ \begin{align*}
\text{MAK}[\text{ml/m}^3] & : - \\
\text{MAK}[\text{mg/m}^3] & : - \\
\text{Peak lim} & : - \\
\text{Preg gr} & : - \\
\text{Perc abs} & : \text{H} \\
\text{Carc cat} & : 2
\end{align*} \]

2-Nitrotoluene
[88-72-2]

The substance can occur simultaneously as vapour and aerosol.

\[ \text{2-Nitrotoluene} \]

\[ \text{(88-72-2)} \]

\[ \text{VP}[\text{hPa}]: 0.20 \]

\[ \begin{align*}
\text{MAK}[\text{ml/m}^3] & : - \\
\text{MAK}[\text{mg/m}^3] & : - \\
\text{Peak lim} & : - \\
\text{Preg gr} & : - \\
\text{Perc abs} & : \text{H} \\
\text{Carc cat} & : 2 \\
\text{Muta cat} & : 3\text{B}
\end{align*} \]

3-Nitrotoluene
[99-08-1]

The substance can occur simultaneously as vapour and aerosol.

\[ \text{3-Nitrotoluene} \]

\[ \text{(99-08-1)} \]

\[ \text{VP}[\text{hPa}]: 0.20 \]

\[ \begin{align*}
\text{MAK}[\text{ml/m}^3] & : - \\
\text{MAK}[\text{mg/m}^3] & : - \\
\text{Peak lim} & : - \\
\text{Preg gr} & : - \\
\text{Perc abs} & : \text{H} \\
\text{Carc cat} & : 2
\end{align*} \]

p-Nitrosophenol → 4-Nitrosophenol

N-Nitroso-N-phenylaniline → N-Nitrosodiphenylamine

N-Nitrosopiperidine
[100-75-4]

The substance can occur simultaneously as vapour and aerosol.

\[ \text{N-Nitrosopiperidine} \]

\[ \text{(100-75-4)} \]

\[ \text{VP}[\text{hPa}]: 0.12 \text{ at } 25°C \text{ (calculated value)} \]

\[ \begin{align*}
\text{MAK}[\text{ml/m}^3] & : - \\
\text{MAK}[\text{mg/m}^3] & : - \\
\text{Peak lim} & : - \\
\text{Preg gr} & : - \\
\text{Perc abs} & : \text{H} \\
\text{Carc cat} & : 2
\end{align*} \]
4-Nitrotoluene
[99-99-0]
The substance can occur simultaneously as vapour and aerosol.

\[\text{CH}_3\]
\[\text{NO}_2\]

\(\text{VP}[\text{hPa}]: 0.22\) at 25°C
\(\text{MAK}[\text{ml/m}^3]: -\)
\(\text{MAK}[\text{mg/m}^3]: -\)
\(\text{Peak lim}: -\)
\(\text{Preg gr}: -\)
\(\text{Perc abs}: \text{H}\)
\(\text{Carc cat}: 3\)

5-Nitro-o-toluidine
[99-55-8]

\[\text{O}_2\text{N-}\text{NH}_2\]
\[\text{CH}_3\]

\(\text{MAK}[\text{ml/m}^3]: -\)
\(\text{MAK}[\text{mg/m}^3]: -\)
\(\text{Peak lim}: -\)
\(\text{Preg gr}: -\)
\(\text{Carc cat}: 2\)

Nitrous oxide
[10024-97-2]
\(\text{N}_2\text{C}\)

\(\text{MAK}[\text{ml/m}^3]: 100\)
\(\text{MAK}[\text{mg/m}^3]: 180\)
\(\text{Peak lim}: \text{II(2)}\)
\(\text{Preg gr}: \text{C}\)

3,3,4,4,5,6,6,6-Nonafluoro-1-hexene
→ 1H,1H,2H-Perfluorohexene

Nonanedionic acid → Azelaic acid

(4-Nonylphenoxy)acetic acid
[3115-49-9]

\(\text{MAK}[\text{ml/m}^3]: -\)
\(\text{Peak lim}: -\)
\(\text{Preg gr}: -\)

Oak (Quercus spp.) → Woods

Oakmoss extracts
see section IV
Sens: Sh

Oak wood dust
\(\text{MAK}[\text{ml/m}^3]: -\)
\(\text{MAK}[\text{mg/m}^3]: -\)
\(\text{Peak lim}: -\)
\(\text{Preg gr}: -\)
\(\text{Carc cat}: 1\)

Dusts have been shown epidemiologically to be unequivocally carcinogenic. The active carcinogenic principle has not been identified to date.

Obeche (Triplochiton scleroxylon) → Woods

Ochratoxin A
[303-47-9]

\[\text{HO-} \text{(CH}_2\text{)}_3\text{-CH}_3\]

\(\text{VP}[\text{hPa}]: 4.4\times10^{-16}\)
\(\text{Carc cat}: 2\)
\(\text{Muta cat}: 3\text{B}\)

Octadecanoic acid → Stearic acid

1-Octadecanol
[112-92-5]

\(\text{HO-} \text{(CH}_2\text{)}_7\text{-CH}_3\)

see section IIb and Xc
\(\text{MAK}[\text{ml/m}^3]: -\)
\(\text{MAK}[\text{mg/m}^3]: -\)
\(\text{Peak lim}: -\)
\(\text{Preg gr}: -\)

9-Octadecenoic acid → Oleic acid

9-Octadecenoic acid decyl ester → n-Decyl oleate

Octadecyl 3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionate
→ 3,5-Di-tert-butyl-4-hydroxyphenyl propionic acid octadecyl ester

Octane (all isomers except trimethylpentane isomers)

\(\text{H}_3\text{C-} \text{C}_9\text{H}_{18}\text{-CH}_3\)

1,8-Octanedicarboxylic acid → Sebacic acid

1-Octanol
[111-87-5]
The substance can occur simultaneously as vapour and aerosol.

\(\text{CH}_3\text{-} \text{(CH}_2\text{)}_7\text{-CH}_2\text{OH}\)

\(\text{VP}[\text{hPa}]: 0.1\) at 25°C

see section Xc
\(\text{MAK}[\text{ml/m}^3]: 10\)
\(\text{MAK}[\text{mg/m}^3]: 54\)
\(\text{Peak lim}: \text{I(1)}\)
\(\text{Preg gr}: \text{C}\)

n-Octanol → 1-Octanol

Octyl acetate → 2-Ethylhexyl acetate

Octyl alcohol → 1-Octanol
2-Octyl-1-dodecanol
[5333-42-6] CH_{2}(CH_{2})_{3}CH(C_{6}H_{7})COH

see section IIb and Xc
MAK\([\text{ml/m}^3]\): –
MAK\([\text{mg/m}^3]\): –
Peak lim: –
Preg gr: –

2-Octyldodecyl alcohol → 2-Octyl-1-dodecanol

2-Octyl-4-isothiazolin-3-one
[26530-20-1] \begin{align*}
\text{S} & \text{N} & \text{C}_{4}\text{H}_{11} \\
\text{O} & &
\end{align*}

see section Xc
MAK\([\text{mg/m}^3]\): 0.05 I
Peak lim: I(2)
Preg gr: C
Perc abs: H
Sens: Sh

2-Octyl-4-isothiazolin-3-one
→ 2-Octyl-4-isothiazolin-3-one

2-Octyl-3(2H)-isothiazolone
→ 2-Octyl-4-isothiazolin-3-one

4-Octyl-N-(4-octylphenyl)benzenamine
→ 4,4’-Dioctyldiphenylamine

4-tert-Octylphenol
[140-66-9] \begin{align*}
\text{HO} & - \text{C(CH}_{2})_{3}\text{-CH}_{2}\text{-C(CH}_{2})_{3} \\
\end{align*}

The substance can occur simultaneously as vapour and aerosol.

VP\([\text{hPa}]\): 0.01
see section Xc
MAK\([\text{ml/m}^3]\): 0.5
MAK\([\text{mg/m}^3]\): 4.3
Peak lim: I(1)
Preg gr: D

n-Octyltin compounds
(as Sn [7440-31-5])

The substance can occur simultaneously as vapour and aerosol.

MAK\([\text{ml/m}^3]\): 0.002
MAK\([\text{mg/m}^3]\): 0.0098
Peak lim: II(2)
Perc abs: H
Sens: –

For octyltin compounds whose organic ligands were already designated with ‘‘Sa’’ or ‘‘Sh’’, these designations also apply.

Carc cat: 4

– Mono-n-octyltin compounds:
  Preg gr: C

– Di-n-octyltin compounds:
  Preg gr: B

– Tri-n-octyltin compounds
  Preg gr: B

– Tetra-n-octyltin
  Preg gr: D

Olaquindox (N-(2-Hydroxyethyl)-3-methyl-2-quinoxalinecarboxamide 1,4-dioxide)
[23696-28-8] \begin{align*}
\text{N} & \text{CO-NH-(CH}_{2})_{2}\text{-OH} \\
\text{CH}_{3} & &
\end{align*}

MAK\([\text{ml/m}^3]\): –
MAK\([\text{mg/m}^3]\): –
Peak lim: –
Preg gr: –
Sens: SP
Carc cat: 3
Muta cat: 2

Oleic acid
[112-80-1] \begin{align*}
\text{CH}_{2}(\text{CH}_{2})_{7}\text{-CH-CH(C}_{6}\text{H}_{5})\text{-COOH}
\end{align*}

see section IIb and Xc
MAK\([\text{ml/m}^3]\): –
MAK\([\text{mg/m}^3]\): –
Peak lim: –
Preg gr: –

Oleic acid decyl ester → n-Decyl oleate

Oleyl alcohol
[143-28-2] \begin{align*}
\text{HO-(CH}_{2})_{8}\text{-CH-CH(C}_{6}\text{H}_{5})\text{-CH}_{3}
\end{align*}

see section IIb and Xc
MAK\([\text{ml/m}^3]\): –
MAK\([\text{mg/m}^3]\): –
Peak lim: –
Preg gr: –

Oleyl sarcosine
[110-25-8] \begin{align*}
\text{H}_{2}\text{C-CH}_{2}\text{-CH-CH(C}_{6}\text{H}_{5})\text{-CO-}
\text{HOOC-CH}_{2}\text{-NH}_{2}
\end{align*}

VP\([\text{hPa}]\): 4×10⁻³⁷
see section Xc
MAK\([\text{mg/m}^3]\): 0.05 I
Peak lim: II(2)
Preg gr: D
Organomercury compounds → Mercury, organic compounds
Organotin compounds → Tin compounds, organic (n-Butyl-)
Orthoarsenic acid → Arsenic
Orthophosphoric acid → Phosphoric acid

Osmium tetroxide
[20816-12-0] OsO₄
see section IIb
MAK[ml/m³]: –
MAK[mg/m³]: –
Peak lim: –
Preg gr: –
Oxacyclopentadiene → Furan
3-Oxapentane-1,5-diol → Diethylene glycol
Oxirane → Ethylene oxide
Oxybispropanol → Dipropylene glycol

4,4’-Oxydianiline
[101-80-4]
\[
\begin{align*}
&\text{H}_2\text{N} \\
&\text{O} \\
&\text{NH}
\end{align*}
\]
MAK[ml/m³]: –
MAK[mg/m³]: –
Peak lim: –
Preg gr: –
Carc cat: 2

2,2’-Oxydiethanol → Diethylene glycol
N-Oxydiethylenbenzothiazole-2-sulfenamide → 2-(4-Morpholinylmercapto)benzothiazole

Ozone
[10028-15-6] O₃
MAK[ml/m³]: –
MAK[mg/m³]: –
Peak lim: –
Preg gr: –
Carc cat: 3

PAH → Polycyclic aromatic hydrocarbons (PAH)

Palladium
[7440-05-3]
and palladium compounds
see section IIb
MAK[ml/m³]: –
MAK[mg/m³]: –
Peak lim: –
Preg gr: –
– Metallic palladium
[7440-05-3] Pd
Sens: –
– Palladium chloride
[7647-10-1] PdCl₂
Sens: Sh
– bioavailable palladium(II) compounds
Sens: Sh

Palmitic acid
[57-10-3] \( \text{CH}_3(\text{CH}_2)_{13}\text{COOH} \)
see section IIb and Xc
MAK[ml/m³]: –
MAK[mg/m³]: –
Peak lim: –
Preg gr: –
Palygorskite (fibrous dust) → Attapulgite
Pao ferro (Machaerium scleroxylon) → Woods

Papain
[9001-73-4]
see section IV
Sens: Sa
Paraffin oil → White mineral oil (pharmaceutical)

Paraquat
[1910-42-5]
H₃C=N\(^\cdot\)\(\text{CT}\)
\(\text{CT}\)
MAK[mg/m³]: 0.1 I
Peak lim: I(1)
Perc abs: H
Paratecoma peroba → Woods

Parathion
[56-38-2]
O₂N\(\text{O}^\cdot\)\(\text{PO}^\cdot\)\(\text{CH}_3\)
\(\text{CH}_3\)
see section XII
MAK[mg/m³]: 0.1 I
Peak lim: II(8)
Preg gr: D
Perc abs: H
Passive smoking → Sidestream smoke (passive smoking at the workplace)
PCBs → Chlorinated biphenyls
PCP → Pentachlorophenol

PEG → Polyethylen glycol (average molecular weight 200-600)

Pencil cedar (Calocedrus decurrens) → Woods

**Pentaborane**

[19624-22-7] \( \text{B}_3\text{H}_6 \)

VP[hPa]: 213

MAK[ml/m³]: 0.005
MAK[mg/m³]: 0.013
Peak lim: II(2)

**Pentachloroethane**

[76-01-7] \( \text{Cl}_2\text{HC}l_3 \)

MAK[ml/m³]: 2
MAK[mg/m³]: 17
Peak lim: II(2)
Preg gr: D
Perc abs: H
Carc cat: 3

**Pentachloronaphthalenes → Chlorinated naphthalenes**

**Pentachlorophenol**

[87-86-5]

see section XIII

MAK[ml/m³]: –
MAK[mg/m³]: –
Peak lim: –
Preg gr: –
Perc abs: H
Carc cat: 2

**Pentadecafluorooctanoic acid → Perfluoroocanoic acid (PFOA)**

**Pentane (all isomers)**

VP[hPa]: 573

MAK[ml/m³]: 1000
MAK[mg/m³]: 3000
Peak lim: II(2)
Preg gr: C

– n-Pentane

[109-66-0] \( \text{H}_3\text{C}-\text{CH}_2\text{CH}_2\text{CH}_2\text{CH}_3 \)

– Isopentane

[78-78-4] \( (\text{H}_3\text{C})_2\text{CH}-\text{CH}_2\text{CH}_3 \)

– tert-Pentane

[463-82-1] \( \text{C}(\text{CH}_3)_2\text{CH} \)

1,5-Pentanedial → Glutaraldehyde

**2,3-Pentanedione**

[600-14-6] \( \text{CH}_3\text{CH}_2\text{CO-CO-CH}_3 \)

MAK[ml/m³]: 0.02
MAK[mg/m³]: 0.083
Peak lim: II(1)
Preg gr: D
Perc abs: H
Sens: Sh

**2,4-Pentanedione**

[123-54-6] \( \text{CH}_3\text{CO-CH}_2\text{CO-CH}_3 \)

MAK[ml/m³]: 20
MAK[mg/m³]: 83
Peak lim: II(2)
Preg gr: C
Perc abs: H

**Pentanol (isomers)**

\( \text{C}_2\text{H}_5\text{OH} \)

– 1-Pentanol

[71-41-0] VP[hPa]: 2.93 at 25°C

– 2-Pentanol

[6032-29-7] VP[hPa]: 8.13 at 25°C

– 3-Pentanol

[584-02-1] VP[hPa]: 11.7 at 25°C

– 2-Methyl-1-butanol

[137-32-6] VP[hPa]: 4.15 at 25°C

– 3-Methyl-1-butanol

[123-51-3] VP[hPa]: 3.15 at 25°C

– 3-Methyl-2-butanol

[598-75-4] VP[hPa]: 12.17 at 25°C

– 2,2-Dimethyl-1-propanol

[75-84-3] VP[hPa]: 21.28

– Mixture of isomers, Pentanol

[30899-19-5; 94624-12-1]

**2-Pentanone**

[107-87-9] \( \text{H}_3\text{C}-\text{CH}_2\text{CO-CH}_3 \)

VP[hPa]: 16

see section IIb

MAK[ml/m³]: –
MAK[mg/m³]: –
Peak lim: –
Preg gr: –

1-Pentyl acetate → Amyl acetate (all isomers)
3-Pentyl acetate → Amyl acetate (all isomers)
Pentyl acetate → Amyl acetate (all isomers)
2-Pentyl-3-phenylpropenoic aldehyde → α-Amylcinnamaldehyde

Pepsin
[9001-75-6]
see section IV
Sens: Sa

★ Peracetic acid
[79-21-0] H₃C-CO-OOH
VP[hPa]: 19.3 at 25°C
see section Xa
MAK[ml/m³]: 0.1
MAK[mg/m³]: 0.316
Peak lim: I(1)
Preg gr: C
Carb cat: 4

Perchloroethylene → Tetrachloroethylene

Perchloromethyl mercaptan
[594-42-3] Cl₃C-S-Cl
see section Ilb
MAK[ml/m³]: –
MAK[mg/m³]: –
Peak lim: –
Preg gr: –

1H,1H,2H-Perfluorohexene
[19430-93-4] H₂C-CH-(CF₂)₃-CF₃
see section Ilb
MAK[ml/m³]: –
MAK[mg/m³]: –
Peak lim: –
Preg gr: –

Perfluorooctanesulfonic acid (PFOS)
[1763-23-1] CF₂(CF₂)₃SO₃H
and its salts
see section XII
MAK[mg/m³]: 0.01 I
Peak lim: II(8)
Preg gr: B
Perc abs: H
Carb cat: 3

Perfluorooctanoic acid (PFOA)
[335-67-1] F₂C(CF₂)₉COOR
and its inorganic salts
R = Ag, H, K, NH₄, Na
see section XII
MAK[mg/m³]: 0.005 I
Peak lim: II(8)
Preg gr: B
Perc abs: H
Carb cat: 4

Perhydronaphthalene → Decahydronaphthalene

Peroxydisulfuric acid diammonium salt
→ Ammonium persulfate

Petroleum, distillates → Distillates (petroleum)

Petroleum sulfonates, calcium salts
(technical mixture in mineral oil)
[61789-86-4]
see section Xc
MAK[mg/m³]: 5 R
Peak lim: II(4)
Preg gr: D

Petroleum sulfonates, sodium salts
[68608-26-4]
see section Ilb and Xc
MAK[ml/m³]: –
MAK[mg/m³]: –
Peak lim: –
Preg gr: –

PHC → Propoxur

Phenanthrene
[85-01-8]
see documentation "Polycyclic Aromatic Hydrocarbons (PAH)"

★ see Section III, “pyrolysis products of organic materials”
Peak lim: –
Preg gr: –
Perc abs: H

Phenethyl alcohol → 2-Phenyl-1-ethanol

Phenol
[108-95-2]
The substance can occur simultaneously as vapour and aerosol.

★ see section XII
MAK[mg/m³]: –
MAK[mg/m³]: –
Peak lim: –
Preg gr: –
Perc abs: H
Carb cat: 3
Mutat cat: 3B

Phenol → Formaldehyde condensation products with phenol

Phenol, 2(or 4)-C9-10-branched alkyl derivs., phosphorothioates → Tris[(2- or 4-) C9-C10-isoalkylphenyl]phosphorothioate

Phenol, isopropylated, phosphate → Triphenyl phosphate, isopropylated
Phenothiazine
[92-84-2]
Phototoxic effect

\[
\text{Phenothiazine}
\]

see section IIb and Xc

\[
\begin{align*}
\text{MAK}[\text{ml/m}^3]: & \quad - \\
\text{MAK}[\text{mg/m}^3]: & \quad - \\
\text{Peak lim}: & \quad - \\
\text{Preg gr}: & \quad - 
\end{align*}
\]

2-Phenoxyethanol
[122-99-6]
The substance can occur simultaneously as vapour and aerosol.

\[
\text{VP}[\text{hPa}]: 0.01 \text{ at } 25^\circ\text{C}
\]

see section Xc

\[
\begin{align*}
\text{MAK}[\text{ml/m}^3]: & \quad 1 \\
\text{MAK}[\text{mg/m}^3]: & \quad 5.7 \\
\text{Peak lim}: & \quad I(1) \\
\text{Preg gr}: & \quad C 
\end{align*}
\]

1-Phenoxy-2-propanol
[770-35-4]
The substance can occur simultaneously as vapour and aerosol.

\[
\text{VP}[\text{hPa}]: 0.03 \text{ at } 25^\circ\text{C}
\]

see section Xc

\[
\begin{align*}
\text{MAK}[\text{ml/m}^3]: & \quad - \\
\text{MAK}[\text{mg/m}^3]: & \quad - \\
\text{Peak lim}: & \quad - \\
\text{Preg gr}: & \quad - 
\end{align*}
\]

Phenylacrolein → Cinnamaldehyde
γ-Phenylallyl alcohol → Cinnamyl alcohol
N-Phenyl aniline → Diphenylamine

Phenyl arsenic compounds
[637-03-6]

\[
\begin{align*}
\text{MAK}[\text{ml/m}^3]: & \quad - \\
\text{MAK}[\text{mg/m}^3]: & \quad - \\
\text{Peak lim}: & \quad - \\
\text{Preg gr}: & \quad - \\
\text{Perc abs}: & \quad H \\
\text{Carc cat}: & \quad 3 
\end{align*}
\]

p-Phenylazoaniline → p-Aminoazobenzene
Phenylbenzene → Biphenyl
N-Phenylbenzene amin → Diphenylamine
N-Phenyl-1,4-benzenediamine → 4-Aminodiphenylamine
Phenyl Cellosolve → 2-Phenoxyethanol

O-Phenylenediamine
[95-54-5]
The substance can occur simultaneously as vapour and aerosol.

\[
\text{VP}[\text{hPa}]: 1.1 \times 10^{-3}
\]

see section Xc

\[
\begin{align*}
\text{MAK}[\text{ml/m}^3]: & \quad - \\
\text{MAK}[\text{mg/m}^3]: & \quad - \\
\text{Peak lim}: & \quad - \\
\text{Preg gr}: & \quad - \\
\text{Sens}: & \quad Sh \\
\text{Carc cat}: & \quad 3 
\end{align*}
\]

m-Phenylenediamine
[108-45-2]
The substance can occur simultaneously as vapour and aerosol.

\[
\text{VP}[\text{hPa}]: 3.8 \times 10^{-4}
\]

see section Xc

\[
\begin{align*}
\text{MAK}[\text{ml/m}^3]: & \quad - \\
\text{MAK}[\text{mg/m}^3]: & \quad - \\
\text{Peak lim}: & \quad - \\
\text{Preg gr}: & \quad - \\
\text{Perc abs}: & \quad H \\
\text{Sens}: & \quad Sh \\
\text{Carc cat}: & \quad 3 
\end{align*}
\]

p-Phenylenediamine
[106-50-3]
The substance can occur simultaneously as vapour and aerosol.

\[
\text{VP}[\text{hPa}]: 0.01
\]

see section Xc

\[
\begin{align*}
\text{MAK}[\text{mg/m}^3]: & \quad 0.1 I \\
\text{Peak lim}: & \quad II(2) \\
\text{Preg gr}: & \quad C \\
\text{Perc abs}: & \quad H \\
\text{Sens}: & \quad Sh \\
\text{Carc cat}: & \quad 3 
\end{align*}
\]

The "Ursol-Asthma" which used to be observed frequently, especially in persons dyeing furs with p-phenylenediamine, has not been demonstrated unequivocally to involve respiratory allergy to p-phenylenediamine; see Toxikologisch-arbeitsmedizinische Begründung von MAK-Werten (18th issue, 1992) and in English translation in Occupational Toxicants Volume 6, VCH-Verlagsgesellschaft mbH, Weinheim 1994.
The substance can occur simultaneously as vapour and aerosol.

VP[hPa]: 0.08
see section IIb and Xc

MAK[ml/m³]: –
MAK[mg/m³]: –
Peak lim: –
Preg gr: –
Perc abs: H
Sens: Sh
Carc cat: 1
Muta cat: 3A

Phenyl isocyanate
[103-71-9]

see section IV
Sens: Sah

Phenyl mercury → Mercury, organic compounds
Phenylmethanal → Benzaldehyde
2-(Phenylmethylene)-heptanal → α-Amylcinnamaldehyde

★ N-Phenyl-1-naphthylamine
[90-30-2]

VP[hPa]: 0.000011
see section Xc

MAK[ml/m³]: –
MAK[mg/m³]: 2 I
Peak lim: II(2)
Preg gr: C
Sens: Sh

★ N-Phenyl-2-naphthylamine
[135-88-6]

VP[hPa]: <0.000011 (calculated value)
see section XII

MAK[ml/m³]: –
MAK[mg/m³]: –
Peak lim: –
Preg gr: –
Perc abs: H
Sens: Sh
Carc cat: 1
Muta cat: 3A

4-PhenylNitrobenzene → 4-Nitrobiphenyl

o-Phenylphenol
[90-43-7]
see also Sodium o-phenylphenol
The substance can occur simultaneously as vapour and aerosol.

see section Xc

MAK[ml/m³]: 5 I
Peak lim: I(1)
Preg gr: C
Carc cat: 4

N-Phenyl-p-phenylenediamine
→ 4-Aminodiphenylamine
N-Phenyl-p-phenylenediamine
→ 4-Aminodiphenylamine
3-Phenyl-2-propanal → Cinnamaldehyde
2-Phenylpropene → α-Methyl styrene
3-Phenyl-2-propen-1-ol → Cinnamyl alcohol
Phenyltin compounds
(as Sn [7440-31-5])
The substance can occur simultaneously as vapour and aerosol.

\[ \text{MAK}[\text{ml/m}^3]: 0.0004 \]
\[ \text{MAK}[\text{mg/m}^3]: 0.002 \]
\[ \text{Peak lim: II(2)} \]
\[ \text{Preg gr: C} \]
\[ \text{Perc abs: H} \]
\[ \text{Carc cat: 4} \]

Phosgene
[75-44-5] \( \text{COCl}_2 \)

\[ \text{MAK}[\text{ml/m}^3]: 0.1 \]
\[ \text{MAK}[\text{mg/m}^3]: 0.41 \]
\[ \text{Peak lim: I(2)} \]
\[ \text{Preg gr: C} \]

Phosphine
[7803-51-2] \( \text{PH}_3 \)

\[ \text{MAK}[\text{ml/m}^3]: 0.1 \]
\[ \text{MAK}[\text{mg/m}^3]: 0.14 \]
\[ \text{Peak lim: II(2)} \]
\[ \text{Preg gr: C} \]

Phosphomolybdic acid → Molybdenum

Phosphoric acid
[7664-38-2] \( \text{H}_3\text{PO}_4 \)

\[ \text{MAK}[\text{mg/m}^3]: 2 \text{ I} \]
\[ \text{Peak lim: I(2)} \]
\[ \text{Preg gr: C} \]

Phosphoric acid methylphenyl diphenyl ester → Diphenyl cresyl phosphate

Phosphoric acid tributyl ester → Tributyl phosphate

Phosphorus, red
[7723-14-0] \( \text{P}_4 \)

see section IIb

\[ \text{MAK}[\text{ml/m}^3]: – \]
\[ \text{MAK}[\text{mg/m}^3]: – \]
\[ \text{Peak lim: –} \]
\[ \text{Preg gr: –} \]

Phosphorus, white/yellow
[7723-14-0; 12185-10-3] \( \text{P}_4 \)

\[ \text{MAK}[\text{mg/m}^3]: 0.01 \text{ I} \]
\[ \text{Peak lim: II(2)} \]
\[ \text{Preg gr: C} \]

Phosphorus oxychloride
[10026-13-8] \( \text{POCl}_3 \)

\[ \text{VP}[\text{hPa}]: 0.016 \]

\[ \text{MAK}[\text{mg/m}^3]: 1 \text{ I} \]
\[ \text{Peak lim: I(1)} \]
\[ \text{Preg gr: C} \]

Phosphorus pentachloride
[1314-80-3] \( \text{PCl}_5 \)

\[ \text{VP}[\text{hPa}]: 36 \]

\[ \text{MAK}[\text{ml/m}^3]: 0.02 \]
\[ \text{MAK}[\text{mg/m}^3]: 0.13 \]
\[ \text{Peak lim: I(1)} \]
\[ \text{Preg gr: C} \]

O-Phthalic acid
[88-99-3]

see section IIb

\[ \text{MAK}[\text{ml/m}^3]: – \]
\[ \text{MAK}[\text{mg/m}^3]: – \]
\[ \text{Peak lim: –} \]
\[ \text{Preg gr: –} \]

m-Phthalic acid
[121-91-5]

\[ \text{MAK}[\text{mg/m}^3]: 5 \text{ I} \]
\[ \text{Peak lim: I(2)} \]
\[ \text{Preg gr: C} \]

p-Phthalic acid
[100-21-0]

\[ \text{MAK}[\text{mg/m}^3]: 5 \text{ I} \]
\[ \text{Peak lim: I(2)} \]
\[ \text{Preg gr: C} \]

Phthalic acid diallyl ester → Diallyl phthalate

Phthalic acid diisodecyl ester → Diisodecyl phthalate
Phthalic anhydride
\[85-44-9\]

see section IIb

\[
\text{MAK}[\text{ml/m}^3]:  -  \\
\text{MAK}[\text{mg/m}^3]:  -  \\
P\text{reg gr}:  -  \\
\text{Sens}:  \text{Sa}
\]

Phytases
see section IV

\[
\text{Sens}:  \text{Sa}
\]

Picric acid
\[88-89-1\]

\[
\text{MAK}[\text{ml/m}^3]:  -  \\
\text{MAK}[\text{mg/m}^3]:  -  \\
P\text{reg gr}:  -  \\
\text{Perc abs}:  \text{H}  \\
\text{Sens}:  \text{Sh}  \\
\text{Carc cat}:  3
\]

Picryl chloride
\[88-88-0\]

see section IV

\[
\text{Sens}:  \text{Sh}
\]

★ Pigment Yellow 12, Pigment Yellow 13,

Pigment Yellow 83
\[6358-85-6; 5102-83-0; 5567-15-7\]

\[
\text{MAK}[\text{mg/m}^3]: 0.3 \text{ R}  \\
\text{multiplied with the material density } \times 0.5; \text{ corresponds to an assumed agglomerate density at a packing factor of 50%}, \text{ see documentation}  \\
P\text{peak lim}:  \text{II}(0)  \\
P\text{reg gr}:  \text{C}  \\
\text{Carc cat}:  4
\]

Piperazine
\[110-85-0\]

The substance can occur simultaneously as vapour and aerosol. Use in metal-working fluids is not permitted; see TRGS 611. Reaction with nitrosating agents can result in the formation of carcinogenic N,N'-dinitrosopiperazine, see Section III “Amines which form carcinogenic nitrosamines on nitrosation”.

\[
\begin{align*}
\text{VP}[\text{hPa}]: 0.21  \\
\text{see section IIb and Xc}
\end{align*}
\]

\[
\text{MAK}[\text{ml/m}^3]:  -  \\
\text{MAK}[\text{mg/m}^3]:  -  \\
P\text{reg gr}:  -  \\
\text{Sens}:  \text{Sah}
\]

Plant or animal proteins
see section IVe

Plants containing sesquiterpene lactones
→ Sesquiterpene lactones

Platinum compounds (Chloroplatinates)
A peak concentration of 2 μg/m³ should not be exceeded. see section IIb

\[
\begin{align*}
\text{MAK}[\text{ml/m}^3]:  -  \\
\text{MAK}[\text{mg/m}^3]:  -  \\
P\text{reg gr}:  -  \\
\text{Sens}:  \text{Sah}
\end{align*}
\]

pMDI → “polymeric MDI”

Polyalpholefins, several CAS Nos, e. g.
\[68649-11-6\]

\[
\begin{align*}
\text{VP}[\text{hPa}]: 0.019  \\
\text{see section Xc}
\end{align*}
\]

\[
\begin{align*}
\text{MAK}[\text{mg/m}^3]: 5 \text{ R}  \\
P\text{peak lim}:  \text{II}(4)  \\
P\text{reg gr}:  \text{C}
\end{align*}
\]

Polybutenes and Polyisobutenes
see section IIb and Xc

\[
\begin{align*}
\text{MAK}[\text{ml/m}^3]:  -  \\
\text{MAK}[\text{mg/m}^3]:  -  \\
P\text{peak lim}:  -  \\
P\text{reg gr}:  -
\end{align*}
\]

→ Polybutenes
\[9003-29-6\]

\[
\begin{align*}
\text{CH}_3 & \quad \text{C}_2\text{H}_5  \\
& \quad \text{CH}_3  \\
\text{CH}_3  \\
\text{x,y}=10-100
\end{align*}
\]

→ Polyisobutenes
\[9003-27-4\]

\[
\begin{align*}
\text{CH}_3 & \quad \text{CH}_3  \\
\text{(H}_3\text{C})_n\text{C}=[\text{CH}2\text{C}]=\text{CH}_2 & \quad \text{CH}_3  \\
\text{CH}_3  \\
\text{n}=10-100
\end{align*}
\]

Polychlorinated biphenyls → Chlorinated biphenyls
Polycyclic aromatic hydrocarbons (PAH)
see Section III, “pyrolysis products of organic materials” and section XII
Perc abs: H

Polyp(1,2-dihydro-2,2,4-trimethyl-quinoline) → 1,2-Dihydro-2,2,4-trimethyl-quinoline polymer

Polymethyl siloxanes, linear
[63148-62-9; 9006-65-9; 9016-00-6]
see section IIb and Xc
MAK [ml/m³]: –
MAK [mg/m³]: –
Peak lim: –
Preg gr: –

Polyethylene glycol (average molecular weight 200-600)
[25322-68-3]
Because formation of a mist is possible, exposure should be minimized for reasons of occupational safety and hygiene.

Polyethylene glycol (average molecular weight > 600)
[25322-68-3]
see section IIb and Xc
MAK [ml/m³]: –
MAK [mg/m³]: –
Peak lim: –
Preg gr: –

Polyethylene polypropylene glycol
[9003-11-6]
see section IIb and Xc
MAK [ml/m³]: –
MAK [mg/m³]: –
Peak lim: –
Preg gr: –

“polymeric MDI”
[9016-87-9] (inhalable fraction) see also 4,4’-Methylene diphenyl diisocyanate (MDI)
“polymeric MDI” (pMDI) is a technical grade MDI, containing 30% – 80% w/w 4,4’-methylene diphenyl isocyanate (MDI); the remainder consists of MDI oligomers and MDI homologues.

Poly(oxy-1,2-ethanediyl)-ω-alkoxy-α-acetic acid → Alkyl ether carboxylic acids

Poly(oxy-1,2-propanediyl)-ω-alkoxy-α-acetic acid → Alkyl ether carboxylic acids

Poly(propylene glycol) n-butyl ether
[9003-13-8]
The substance can occur simultaneously as vapour and aerosol.

Polytetrafluoroethene
[9002-84-0]
(inhalable fraction) see section VI and g and Xc
MAK [mg/m³]: 4 I
Preg gr: C
Polytetrafluoroethene
[9002-84-0]
(respirable fraction)
except for ultrafine particles; see section Vh
\[-\text{CF}_2-\text{CF}_2\]n
see section Vf and Xc
MAK\[\text{mg/m}^3\]: 0.3 R
multiplied with the material density
Peak lim: II(8)
Preg gr: C
Carc cat: 4

Polyvinyl chloride
[9002-86-2]
except for ultrafine particles; see section Vh
\(-\text{CH}_3-\text{CHCl}-\text{CH}_2-\text{CHCl}-\text{CH}_3\|--\text{n}
see section Vf
MAK\[\text{mg/m}^3\]: 0.3 R
multiplied with the material density
Peak lim: II(8)
Preg gr: C
Carc cat: 4

Portland cement dust
[65997-15-1]
Cr(VI) content and quartz level to be assessed separately
MAK\[\text{mg/m}^3\]: –
Peak lim: –
Preg gr: –
Sens: –
Is valid only for low-chromate cement containing less than 2 ppm (2 mg/kg) of chromium(VI). Refer to the chromium(VI) compounds for cement with a higher chromium(VI) content.
Carc cat: 3

Potassium benzoate → Benzoic acid alkali salts

Potassium citrate → Citric acid
Potassium citrate → Citric acid alkali metal salts

Potassium cyanide
[151-50-8] KCN
MAK\[\text{mg/m}^3\]: 5.0 I
Peak lim: II(1)
Preg gr: C

Potassium dichloroacetate → Dichloroacetic acid
Potassium metabisulfite → Sulfites
Potassium perfluorooctanoate → Perfluorooctanoic acid (PFOA)
Potassium persulfate → Alkali persulfates

Potassium titanates (fibrous dust)
several CAS Nos and formulas, e.g.
see section III
MAK\[\text{ml/m}^3\]: –
MAK\[\text{mg/m}^3\]: –
Peak lim: –
Preg gr: –
Carc cat: 2

– Potassium titanate
[12030-97-6] K₂TiO₃
– Potassium titanate
[12056-46-1] K₂Ti₅O₁₂
– Potassium titanate
[12056-49-4] K₂Ti₄O₉
– Potassium titanate
[12056-51-8] K₂Ti₆O₁₃
– Potassium titanate
[59766-31-3] K₂Ti₆O₁₇

Propane
[74-98-6] H₃C-CH₂-CH₃
MAK\[\text{ml/m}^3\]: 1000
MAK\[\text{mg/m}^3\]: 1800
Peak lim: II(4)
Preg gr: D

1,3-Propanedicarboxilic acid → Glutaric acid
1,2-Propanediol → Propylene glycol

1,3-Propane sultone
[1120-71-4]
The substance can occur simultaneously as vapour and aerosol.

VP[hPa]: 0.48
MAK\[\text{ml/m}^3\]: –
MAK\[\text{mg/m}^3\]: –
Peak lim: –
Preg gr: –
Perc abs: H
Carc cat: 1
Muta cat: 3A

1,2,3-Propanetriol → Glycerol
2-Propanol → Isopropyl alcohol

Propargyl alcohol
[107-19-7] HC=C-CH₂OH
VP[hPa]: 11.6
MAK\[\text{ml/m}^3\]: 2
MAK\[\text{mg/m}^3\]: 4.7
Peak lim: I(2)
Preg gr: D
Perc abs: H

2-Propanal → Acrolein
2-Propenoic acid 1,4-butanediy1 ester → 1,4-Butanediol diacrylate
2-Propenoic acid 1,2-ethanediyl bis (oxy-2,1-ethanediyl)ester → Triethylene glycol diacylate
2-Propenoic acid 2-hydroxyethyl ester → Acrylic acid 2-hydroxyethyl ester
2-Propenoic acid 2-(hydroxymethyl)-2-(((1-oxo-2-propenyl)oxy)-methyl)-1,3-propanediyl ester → Pentaerythritol triacrylate
2-Propenoic acid hydroxypropyl ester → Acrylic acid hydroxypropyl ester (all isomers)
2-Propenoic acid oxydi-2,1-ethanediyl ester → Diethylene glycol diacrylate
2-Propen-1-ol → Allyl alcohol
4-Propenyl-2-methoxyphenol → Isoeugenol

β-Propirolactone
[57-57-8]

\[
\begin{array}{c}
\text{O} \\
\text{O}
\end{array}
\]

MAK[ml/m³]: –
MAK[mg/m³]: –
Preg gr: –
Perc abs: H
Carc cat: 2

Propionic acid
[79-09-4] \(\text{H}_2\text{C-CH}_2\text{-COOH}\)

VP[Pa]: 4
MAK[ml/m³]: 10
MAK[mg/m³]: 31
Peak lim: I(2)
Preg gr: C

Propoxur
[114-26-1]

\[
\begin{array}{c}
\text{O} \\
\text{O}
\end{array}
\]

MAK[mg/m³]: 2 I
Peak lim: II(8)

2-Propanoyl alcohol
[2807-30-9] \(\text{CH}_2\text{(CH}_2\text{)}_2\text{O-(CH}_2\text{)}_2\text{-OH}\)

VP[Pa]: 6.4 at 25°C
MAK[ml/m³]: 10
MAK[mg/m³]: 43
Peak lim: I(2)
Preg gr: C
Perc abs: H

2-Proxyethanol acetate → 2-Proxyethyl acetate

2-Proxyethyl acetate
[20706-25-6]
The substance can occur simultaneously as vapour and aerosol.

\[
\begin{array}{c}
\text{O} \\
\text{H}_2\text{C-CH}_2\text{-O-CH}_2\text{-O-CH}_2\text{-CH}_3
\end{array}
\]

VP[Pa]: 0.67
MAK[ml/m³]: 20
MAK[mg/m³]: 120
Peak lim: I(2)
Preg gr: C
Perc abs: H

Propylacetaete
VP[Pa]: 33
MAK[ml/m³]: 100
MAK[mg/m³]: 420
Peak lim: I(2)

- n-Propyl acetate
[109-60-4] \(\text{H}_3\text{C-COOCH}_2\text{-CH}_2\text{-CH}_3\)
Preg gr: D

- Isopropyl acetate
[108-21-4] \(\text{H}_3\text{C-COOCH(CH}_3\text{)}_2\)
Preg gr: C

Propyl allyl disulfide → Allyl propyl disulfide

iso-Propyl benzene (cumene)
[98-82-8]

VP[Pa]: 4
see section XII
MAK[ml/m³]: 10
MAK[mg/m³]: 50
Peak lim: II(4)
Preg gr: C
Perc abs: H
Carc cat: 3

n-Propyl bromide → 1-Bromopropane

Propyl Cellosolve → 2-Proxyethanol

Propylene carbonate → 4-Methyl-1,3-dioxolan-2-one

Propylene dichloride → 1,2-Dichloropropane

Propylene glycol
[57-55-6]
The substance can occur simultaneously as vapour and aerosol.

\[
\begin{array}{c}
\text{O} \\
\text{H}_2\text{C-CH}_2\text{(OH)}\text{-CH}_2\text{OH}
\end{array}
\]

VP[Pa]: 0.11
see section IIb and Xc
MAK[ml/m³]: –
MAK[mg/m³]: –
Peak lim: –
Preg gr: –
Propylene glycol dinitrate
[6423-43-4]
The substance can occur simultaneously as vapour and aerosol.

\[
\text{\[
\begin{array}{c}
\text{CH}_3 \\
\text{O} \\
\text{O} \\
\text{\text{NO}_2}
\end{array}
\]}
\]

VP[hPa]: 0.084
MAK[ml/m³]: 0.01
MAK value applies for the sum of the concentrations of ethylene glycol dinitrate, nitroglycerin and propylene glycol dinitrate in the air.
MAK[mg/m³]: 0.069
Peak lim: II(1)
Preg gr: C
Perc abs: H

Propylene glycol 1-methyl ether
→ 1-Methoxy-2-propanol
Propylene glycol 2-methyl ether
→ 2-Methoxypropanol-1
Propylene glycol 1-methyl ether-2-acetate
→ 1-Methoxypropyl-2-acetate
Propylene glycol 2-methyl ether-1-acetate
→ 2-Methoxypropylacetate-1
Propylene glycol monoacrylate → Acrylic acid hydroxypropyl ester (all isomers)
Propylene glycol monoethyl ether
→ 1-Ethoxy-2-propanol

Propylene imine
[75-55-8]

MAK[ml/m³]: –
MAK[mg/m³]: –
Peak lim: –
Preg gr: –
Perc abs: H
Carc cat: 3

Propylene oxide → 1,2-Epoxypropane

n-Propyl nitrate
[627-13-4]

H₃C-(CH₂)₂-ONO₂

see section IIb
MAK[ml/m³]: –
MAK[mg/m³]: –
Peak lim: –
Preg gr: –

Propyn → Methyl acrylene

Pseudocumene (1,2,4-Trimethylbenzene)
→ Trimethylbenzene (all isomers)
PTBBA (p-tert-Butylbenzoic acid)
→ 4-tert-Butylbenzoic acid
PVC → Polyvinyl chloride

Pyrene
[129-00-0]
see documentation "Polycyclic Aromatic Hydrocarbons (PAH)"

Pyrethrum
[8003-34-7]

see section IIb and XII

Pyridine
[110-86-1]

VP[hPa]: 20
MAK[ml/m³]: –
MAK[mg/m³]: –
Peak lim: –
Preg gr: –
Perc abs: H
Carc cat: 3

Pyrolysis products of organic materials
see section III

Pyrrolidine
[123-75-1]

Use in metal-working fluids is not permitted: see TRGS 611.
Reaction with nitrosating agents can result in the formation of carcinogenic N-nitroso-pyrrolidine, see Section III
"Amines which form carcinogenic nitrosamines on nitrosation".

Quartz → Silica, crystalline
Quartz glass → Silica, amorphous b) quartz glass [60676-86-0], fused silica [60676-86-0],
silica fume (calcined) [69012-64-2],
diatomaceous earth [68855-54-9]

Quercus spp. → Woods

Quinone
[106-51-4]

\[
\begin{align*}
\text{VP[hPa]}: & \quad 0.12 \\
\text{MAK}[\text{ml/m}^3]: & \quad - \\
\text{MAK}[\text{mg/m}^3]: & \quad - \\
\text{Peak lim}: & \quad - \\
\text{Preg gr}: & \quad - \\
\text{Sens}: & \quad \text{Sh} \\
\text{Carc cat}: & \quad 3 \\
\text{Muta cat}: & \quad 3B
\end{align*}
\]

Quinone oxime → 4-Nitrosophenol

Ramin (Gonystylus bancanus) → Woods

Refrigerant 134a → 1,1,1,2-Tetrafluoroethane

Rennets, microbial → Microbial rennets: endothiapepsin and mucorpepsin

Resorcinol
[108-46-3]

The substance can occur simultaneously as vapour and aerosol.

\[
\begin{align*}
\text{VP[hPa]} & \quad 3 \times 10^{-4} \text{ at } 25^\circ \text{C}
\end{align*}
\]

see section IIb

\[
\begin{align*}
\text{MAK}[\text{ml/m}^3]: & \quad - \\
\text{MAK}[\text{mg/m}^3]: & \quad - \\
\text{Peak lim}: & \quad - \\
\text{Preg gr}: & \quad - \\
\text{Sens}: & \quad \text{Sh}
\end{align*}
\]

Resorcinol bis(2,3-epoxypropyl)ether → Diglycidyl resorcinol ether

Resorcinol diglycidyl ether → Diglycidyl resorcinol ether

Rhodium
[7440-16-6] Rh

and its inorganic compounds

\[
\begin{align*}
\text{MAK}[\text{ml/m}^3]: & \quad - \\
\text{MAK}[\text{mg/m}^3]: & \quad - \\
\text{Peak lim}: & \quad - \\
\text{Preg gr}: & \quad - \\
\text{Carc cat}: & \quad 3
\end{align*}
\]

Ricinus protein
see section IV

\[
\begin{align*}
\text{Sens}: & \quad \text{Sa}
\end{align*}
\]

Rock wool (fibrous dust)
see section III

\[
\begin{align*}
\text{MAK}[\text{ml/m}^3]: & \quad - \\
\text{MAK}[\text{mg/m}^3]: & \quad - \\
\text{Peak lim}: & \quad - \\
\text{Preg gr}: & \quad - \\
\text{Carc cat}: & \quad 2
\end{align*}
\]

Rosewood (Dalbergia spp.) → Woods

Rosin (colophony)
[8050-09-7]

see section IV

\[
\begin{align*}
\text{Sens}: & \quad \text{Sh}
\end{align*}
\]

An immunological genesis of the asthma often seen in persons working with materials containing rosin has not been proved.

Rottenone
[83-79-4]

see section IIb

\[
\begin{align*}
\text{MAK}[\text{ml/m}^3]: & \quad - \\
\text{MAK}[\text{mg/m}^3]: & \quad - \\
\text{Peak lim}: & \quad - \\
\text{Preg gr}: & \quad - \\
\text{Perc abs}: & \quad \text{H}
\end{align*}
\]

Rubber components
see section IV

\[
\begin{align*}
\text{Dithiocarbamates} \\
\text{Thiazoles} \\
p-\text{Phenylenediamine compounds} \\
\text{Thiurams}
\end{align*}
\]

Rye → Cereal flour dusts

Santos rosewood (Machaerium scleroxylon) → Woods

Sapele (Entandrophragma spp.) → Woods

Sapupira, (black) sucupira (Bowdichia nitida) → Woods

Sebacic acid
[111-20-6]

\[
\begin{align*}
\text{HO}_2\text{C-} & \quad (\text{CH}_2)_4\text{CO}_2\text{H}
\end{align*}
\]

see section IIb and Xc

\[
\begin{align*}
\text{MAK}[\text{ml/m}^3]: & \quad - \\
\text{MAK}[\text{mg/m}^3]: & \quad - \\
\text{Peak lim}: & \quad - \\
\text{Preg gr}: & \quad - \\
\text{Sens}: & \quad \text{Sh}
\end{align*}
\]

Sens: Sh
Selenium
[7782-49-2] Se
and its inorganic compounds (as Se)
see section XII
MAK[mg/m³]: 0.02 I
Peak lim: II(8)
Preg gr: C
Perc abs: H
Carc cat: 3

Sepiolite (fibrous dust)
several CAS Nos and formulas, e.g.
see section III
MAK[ml/m³]: –
MAK[mg/m³]: –
Peak lim: –
Preg gr: –
Carc cat: 3
– Sepiolite
[18307-23-8] Mg₉H₆(SiO₃)₁₂·10 H₂O
– Sepiolite
[15501-74-3] Mg₉H₆(SiO₃)₁₂·H₂O

Sesquiterpene lactones
see section IV
Sens: Sh
– Alantolactone
[546-43-0]
– Anthecotulide
[23971-84-8]
– Arteglasin A
[33204-39-6]
– Carabrone
[1748-81-8]
– Costunolide
[553-21-9]
– Dehydrocostus lactone
[477-43-0]
– (+)-Frullanolide and (-)-Frullanolide
[40077-60-7, 27579-97-1]
– Helenalin
[6754-13-8]
– Isoalantolactone
[470-17-7]
– Lactucin
[1891-29-8]
– Laurenobiolide
[35001-25-3]
– Parthenin
[508-59-8]
– Parthenolide
[20554-84-1]
– α-Peroxyachifolide
[134954-21-5]
– Pyrethrosin
[28272-18-6]

Sevoflurane
[28523-86-6] (CF₃)₂CH-O-CH₂F
see section IIb
MAK[ml/m³]: –
MAK[mg/m³]: –
Peak lim: –
Preg gr: –

Sidestream smoke (passive smoking at the workplace)
MAK[ml/m³]: –
MAK[mg/m³]: –
Peak lim: –
Preg gr: –
Carc cat: 1
Silica, amorphous a) colloidal amorphous silica [7631-86-9] including pyrogenic [112945-52-5] and wet process silica [7631-86-9] and diatomaceous earth (uncalcined) [61790-53-2]
see section V
MAK[mg/m³]: 4 I
Preg gr: C

Silver
[7440-22-4] Ag
MAK[mg/m³]: 0.1 I
Peak lim: II(8)
Preg gr: D
Silver perfluorooctanoate → Perfluorooctanoic acid (PFOA)

Silver salts
(as Ag [7440-22-4])
MAK[mg/m³]: 0.01 I
Peak lim: I(2)
Preg gr: D

Slag wool (fibrous dust)
see section III

Silicic acid tetraethyl ester
[78-10-4] Si(OCH₂CH₃)₄
VP[hPa]: ~2
MAK[ml/m³]: –
MAK[mg/m³]: 86
Peak lim: I(1)
Preg gr: D

Silicon carbide
[409-21-2] SiC
(fibrous dust)
see section III
MAK[mg/m³]: –
Peak lim: –
Preg gr: –
Carc cat: 2

Silicon carbide
[409-21-2] SiC
(without fibres)
see section IIb
MAK[ml/m³]: –
MAK[mg/m³]: –
Peak lim: –
Preg gr: –

Silicon dioxide → Silica, crystalline

Silicone → Polydimethyl siloxanes, linear
Silicone oil → Polydimethyl siloxanes, linear

Silver perfluorooctanoate → Perfluorooctanoic acid (PFOA)

Sodium citrate → Citric acid

Sodium azide
[26628-22-8] N₃Na
MAK[mg/m³]: 0.2 I
Peak lim: I(2)
Preg gr: D

Sodium benzoate → Benzoic acid alkali salts

Sodium bisulfite → Sulfites

Sodium cyanide
[143-33-9] NaCN
MAK[mg/m³]: 3.8 I
Peak lim: I(1)
Preg gr: C
Perc abs: H

Sodium dichloroacetate → Dichloroacetic acid

Sodium diethyldithiocarbamate
[148-18-5] (CH₃CH₂N-C-SN₂)₅
Use in metal-working fluids is not permitted: see TRGS 611.
Reaction with nitrosating agents can result in the formation of carcinogenic N-nitrosodiethylamine, see Section III
“Amines which form carcinogenic nitrosamines on nitrosation”.

Sodium ethylmercurithiosalicylate → Thimerosal
Sodium fluoracetate

[62-74-8] FCH₂COO⁻ Na⁺

MAK [mg/m³]: 0.05 I
Peak lim: II(4)
Preg gr: B
Perc abs: H

Sodium hydroxide

[1310-73-2] NaOH

see section IIb

MAK [ml/m³]: –
MAK [mg/m³]: –
Peak lim: –
Preg gr: –

Sodium metabisulfite → Sulfites
Sodium molybdate → Molybdenum

Sodium monochloroacetate

[3926-62-3] see also Monochloroacetic acid

ClCH₂-COONa

MAK [mg/m³]: 2 I
as monochloroacetic acid
Peak lim: II(2)
Preg gr: C
Perc abs: H

Sodium perfluorooctanoate → Perfluorooctanoic acid (PFOA)

Sodium persulfate → Alkali persulfates
Sodium petroleum sulfonates → Petroleum sulfonates, sodium salts

Sodium o-phenylphenol

[132-27-4]

see section Xc

MAK [mg/m³]: 2 I
Peak lim: I(1)
Preg gr: C
Carc cat: 4

Sodium pyridinethione → Sodium pyrithione

Sodium pyrithione

[3811-73-2; 15922-78-8]

see section Xc

MAK [mg/m³]: 0.2 I
Peak lim: II(2)
Preg gr: C
Perc abs: H

Sodium tetraborate pentahydrate → Boric acid
Styrene
[100-42-5]

VP[hPa]: 6
see section XII

MAK[ml/m³]: 20
see definition of Carcinogen Category 5 and supporting documentation

MAK[mg/m³]: 86
Peak lim: II(2)
Preg gr: C
Carc cat: 5

Subtilisins
see section IV

Sens: Sa

Sucinic acid
[110-15-6]

HO₂C-(CH₂)₅-CO₂H
see section Xc

MAK[mg/m³]: 2.1
Peak lim: I(2)
Preg gr: C

Sulfites
[14265-45-3]

Causes pseudoallergic reactions, see Toxikologisch-arbeitsmedizinische Begründung von MAK-Werten (26st issue 1998).

see section IV

Sulfonic acid, petroleum, sodium salts → Petroleum sulfonates, sodium salts

Sulfonic acids, petroleum, calcium salts → Petroleum sulfonates, calcium salts (technical mixture in mineral oil)

Sulfotep → TEDP

Sulfur dioxide
[7446-09-5]

SO₂

MAK[ml/m³]: 1
MAK[mg/m³]: 2.7
Peak lim: I(1)
A momentary value of 1 ml/m³ (2.7 mg/m³) should not be exceeded.
Preg gr: C

Sulfur hexafluoride
[2551-62-4]

SF₆

MAK[ml/m³]: 1000
MAK[mg/m³]: 6100
Peak lim: II(8)
Preg gr: D

Sulfuric acid
[7664-93-9]

H₂SO₄

MAK[mg/m³]: 0.1 I
Peak lim: I(1)
A momentary value of 0.2 mg/m³ should not be exceeded.
Preg gr: C
Carc cat: 4

Sulfur monochloride
[10025-67-9]

S₇Cl₂
see section IIb

MAK[ml/m³]: –
MAK[mg/m³]: –
Peak lim: –
Preg gr: –

Sulfur pentafluoride
[5714-22-7]

S₇F₁₀
see section IIb

MAK[ml/m³]: –
MAK[mg/m³]: –
Peak lim: –
Preg gr: –

Swietenia spp. → Woods

Sylvic acid → Abietic acid

2,4,5-T → 2,4,5-Trichlorophenoxyacetic acid

Tabebuia avellanedae → Woods

Tabebuia serratifolia → Woods

Tabebuia spp. → Woods

Talc
[14807-96-6]

Mg₃(OH)₂Si₄O₁₀
(without asbestos fibres)
(respirable fraction)

MAK[ml/m³]: –
MAK[mg/m³]: –
Peak lim: –
Preg gr: –
Sens: Sh

only applies to tall oil distillates containing abietic acid, see also Toxikologisch-arbeitsmedizinische Begründung von MAK-Werten (34th issue 2002)

Tall oil, distilled
[8002-26-4]

see section IIb and Xc

MAK[ml/m³]: –
MAK[mg/m³]: –
Peak lim: –
Preg gr: –

Sens: Sh

Tall oil rosin and fatty acids → Tall oil, distilled

Tantalum
[7440-25-7]

Ta
(inhalable fraction)
see section VI and g

MAK[mg/m³]: 4 I
Preg gr: C
Tantalum
[7440-25-7]
(respirable fraction)
except for ultrafine particles; see section Vh
Ta
see section Vf
MAK[mg/m³]: 0.3 R
multiplied with the material density
Peak lim: II(8)
Preg gr: C
Carc cat: 4

Tartaric acid
[87-69-4]
\[\text{HO}_2\text{C-CHOH-CHOH-CO}_2\text{H}\]
see section Xc
MAK[mg/m³]: 2 I
Peak lim: I(2)
Preg gr: C

TBTO → n-Butyltin compounds

TCDD → 2,3,7,8-Tetrachlorodibenzo-p-dioxin

Teak (Tectona grandis) → Woods

Tectona grandis → Woods

TEDP
[3689-24-5]
The substance can occur simultaneously as vapour and aerosol.

VP[hPa]: 2.2×10⁻⁴
MAK[mL/m³]: 0.01
MAK[mg/m³]: 0.13
Peak lim: II(2)
Preg gr: C
Perc abs: H

Tellurium
[13494-80-9]
Te
and its inorganic compounds
see section IIb

MAK[mL/m³]: –
MAK[mg/m³]: –
Peak lim: –
Preg gr: –

TEPP
[107-49-3]
The substance can occur simultaneously as vapour and aerosol.

VP[hPa]: 0.03

MAK[mL/m³]: 0.005
MAK[mg/m³]: 0.060
Peak lim: II(2)
Preg gr: H
Perc abs: H
Carc cat: 4

Terephthalic acid → p-Phthalic acid

Terminalia spp. → Woods

3,3',4,4’-Tetraminobiphenyl
→ 3,3’-Diaminobenzidine and its tetrahydrochloride

1,1,2,2-Tetabromoethane
[79-27-6]
Br₂HC-CHBr₂
see section IIb
MAK[mL/m³]: –
MAK[mg/m³]: –
Peak lim: –
Preg gr: –

2,4,5,6-Tetrachloro-1,3-benzenedicarbonitrile → Chlorothalonil

2,3,7,8-Tetrachlorodibenzo-p-dioxin
[1746-01-6]
MAK[mg/m³]: 1.0E-8 I
Peak lim: II(8)
Preg gr: C
Carc cat: 4
Perc abs: H

1,1,1,2-Tetrachloro-2,2-difluoroethane (FC-112a)
[76-11-9]
Cl₂F₂CCl₂

MAK[mL/m³]: 200
MAK[mg/m³]: 1700
Peak lim: II(2)
Preg gr: D

1,1,2,2-Tetrachloro-1,2-difluoroethane (FC-112)
[76-12-0]
Cl₂FC-CCl₂F

MAK[mL/m³]: 200
MAK[mg/m³]: 1700
Peak lim: II(2)
Preg gr: D

1,1,2,2-Tetrachloroethane
[79-34-5]
Cl₃HC-CHCl₂
VP[hPa]: 6.4
MAK[mL/m³]: 2
MAK[mg/m³]: 14
Peak lim: II(2)
Preg gr: D
Perc abs: H
Carc cat: 4

Tetrachloroethylene
[127-18-4]
Cl₃C-CCl₂
VP[hPa]: 19
see section XII
MAK[mL/m³]: 10
MAK[mg/m³]: 69
Peak lim: II(2)
Preg gr: C
Perc abs: H
Carc cat: 3
Tetrachloroisophthalonitrile → Chlorothalonil
Tetrachloromethane → Carbon tetrachloride
Tetrachloronaphthalenes → Chlorinated naphthalenes
α,α,α,4-Tetrachlorotoluene → p-Chlorobenzotrichloride
Tetradecanoic acid → Myristic acid

1-Tetradecanol [112-72-1]
The substance can occur simultaneously as vapour and aerosol.

\[ \text{VP[hPa]}: 1.5 \times 10^{-4} \text{ at 25°C (calculated value)} \]
see section IIb and Xc

\[ \text{MAK[ml/m}^3\text{]}: – \]
\[ \text{MAK[mg/m}^3\text{]}: – \]
\[ \text{Peak lim: –} \]
\[ \text{Preg gr: –} \]

Tetraethylene glycol diacylate [17831-71-9]

\[ \text{VP[hPa]}: 0.35 \text{ at 25°C} \]
see section XII

\[ \text{MAK[ml/m}^3\text{]}: 0.05 \]
\[ \text{Peak lim: II(2)} \]
\[ \text{Preg gr: B} \]
\[ \text{Perc abs: H} \]

Tetraethyl silicate → Silicic acid tetraethyl ester

1,1,1,2-Tetrafluoroethane [116-14-3]

\[ \text{VP[hPa]}: 5700 \]

\[ \text{MAK[ml/m}^3\text{]}: 1000 \]
\[ \text{MAK[mg/m}^3\text{]}: 4200 \]
\[ \text{Peak lim: II(8)} \]
\[ \text{Preg gr: C} \]

Tetrahydrofurfuryl methacrylate [2455-24-5]
The substance can occur simultaneously as vapour and aerosol.

\[ \text{VP[hPa]}: 9.4 \times 10^{-3} \]
see section IV

\[ \text{Sens: Sh} \]

3α,4,7α-Tetrahydro-4,7-methanoindene → Dicyclopentadiene
Tetrahydromethyl-1,3-isobenzofurandione → Methyltetrahydrophthalic anhydride

**Tetrahydronaphthalene**

[119-64-2]
The substance can occur simultaneously as vapour and aerosol.

VP[hPa]: 0.24
MAK[ml/m³]: 2
MAK[mg/m³]: 11
Peak lim: I(1)
Preg gr: C

**Tetrahydrothiophene (THT)**

[110-01-0]
MAK[ml/m³]: 50
MAK[mg/m³]: 183
Peak lim: I(1)
Preg gr: C

Tetralene → Tetrahydronaphthalene

4-(1,1,3,3-Tetramethylbutyl)phenol → 4-tert-Octylphenol

Tetramethyl diaminobenzophenone → Michler’s ketone

Tetramethyl diaminodiphenylacetimine → Auramine

Tetramethyl diaminodiphenylacetimine hydrochloride → Auramine

N,N,N’,N’-Tetramethyl-4,4’-diaminodiphenylmethane → 4,4’-Methylene-bis(N,N-dimethylaniline)

**Tetramethyllead**

[75-74-1] Pb(CH₃)₄
(as Pb)
VP[hPa]: 30
see section XII
MAK[mg/m³]: 0.05
Peak lim: II(2)
Preg gr: B
Perc abs: H

**Tetramethyl succinonitrile**

[3333-52-6]
The substance can occur simultaneously as vapour and aerosol.

VP[hPa]: 9.8×10⁻³
see section IIb
MAK[ml/m³]: –
MAK[mg/m³]: –
Peak lim: –
Preg gr: –
Perc abs: H

Tetramethyliuram disulfide → Thiram

Tetramethyltin → Methyltin compounds

**Tetramethyl urea (TMU)**

[632-22-4] ((CH₃)₂N)₂CC
see section IIb
MAK[ml/m³]: –
MAK[mg/m³]: –
Peak lim: –
Preg gr: –

**Tetranitromethane**

[509-14-8] C(NO₂)₄
VP[hPa]: 11
MAK[ml/m³]: –
MAK[mg/m³]: –
Peak lim: –
Preg gr: –
Perc abs: H
Carc cat: 2

Tetryl → N-Methyl-N,2,4,6-tetranitroaniline

**Thallium, soluble compounds**

see section IIb

**Thiabendazole**

[148-79-8]
see section Xc
MAK[mg/m³]: 20 I
Peak lim: II(2)
Preg gr: C
classification in Pregnancy Risk Group C was re-evaluated in 2011 and confirmed
Muta cat: 5

2-(4’-Thiazolyl)benzimidazole → Thiabendazole

**Thimerosal**

[54-64-8]
see section IV
Sens: Sh

2,2’-Thiobis(4,6-dichlorophenol) → Bithionol

Thiocarbamide → Thiourea
**4,4’-Thiodianiline**

[139-65-1]

\[
\begin{align*}
&\text{H}_2\text{N} \\
&\text{S} \\
&\text{N} \\
&\text{NH}_2 \\
&\text{S} \\
&\text{H}_2
\end{align*}
\]

\[\text{H}_2\text{N-C-S-NH}_2\]

- MAK[ml/m³]: –
- MAK[mg/m³]: –
- Peak lim: –
- Preg gr: –
- Carc cat: 2

p,p’-Thiodianiline → 4,4’-Thiodianiline

**2,2’-Thiodiethylene Bis[3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionate]**

[41484-35-9]

\[
\begin{align*}
&\text{HS-CH}_2\text{-COOH} \\
&\text{HO} \\
&(\text{CH}_2\text{CO}_2\text{(CH}_3\text{)}_2\text{S})_2
\end{align*}
\]

see section Xc

- MAK[mg/m³]: 2 I
- Peak lim: II(2)
- Preg gr: C
- Perc abs: H
- Sens: Sh

**Thioglycolates**

- MAK[mg/m³]: 2 I
- Peak lim: II(2)
- Preg gr: C
- Perc abs: H
- Sens: Sh

- Thioglycolic acid monoglyceryl ester → Glyceryl monothioglycolate

**Thiomersal → Thimerosal**

**Thioglycolic acid**

[68-11-1]

The substance can occur simultaneously as vapour and aerosol.

- VP[hPa]: 0.1

see section IIb

- MAK[ml/m³]: –
- MAK[mg/m³]: –
- Peak lim: –
- Preg gr: –
- Perc abs: H
- Sens: Sh

**Thiomersalate → Thimerosal**

**Thiourea**

[62-56-6]

- MAK[ml/m³]: –
- MAK[mg/m³]: –
- Peak lim: –
- Preg gr: –
- Sens: Sh SP
- Carc cat: 3

**Thiram**

[137-26-8]

Reaction with nitrosating agents can result in the formation of carcinogenic N-nitrosodimethylamine, see Section III

- “Amines which form carcinogenic nitrosamines on nitrosation”.

\[(\text{H}_3\text{C})_2\text{N-CS}_2\]

- MAK[mg/m³]: 1 I
- Peak lim: II(2)
- Preg gr: C
- classification in Pregnancy Risk Group C was re-evaluated in 2011 and confirmed
- Sens: Sh

**THU → Thiourea**

**Thuja spp. → Woods**

**Tieghemella spp. → Woods**

**Tin**

[7440-31-5]

And its inorganic compounds

see section IIb

- MAK[ml/m³]: –
- MAK[mg/m³]: –
- Peak lim: –
- Preg gr: –

- Tin compounds, organic (n-Butyl-) → n-Butyltin compounds

- Tin compounds, organic (Ethyl-) → Ethyltin compounds

- Tin compounds, organic (Methyl-) → Methyltin compounds

- Tin compounds, organic (n-Octyl-) → n-Octyltin compounds

- Tin compounds, organic (Phenyl-) → Phenyltin compounds

**Titanium dioxide**

[13463-67-7]

(respirable fraction)

except for ultrafine particles; see section Vh

\[\text{TiO}_2\]

see section VI

- MAK[mg/m³]: 0.3 R
  multiplied with the material density
- Peak lim: II(8)
- Preg gr: C
- Carc cat: 4

**TNT → 2,4,6-Trinitrotoluene**

**o-Tolidine → 3,3’-Dimethylbenzidine**
**Toluene (Toluol)**

[108-88-3]

VP[hPa]: 37.9 at 25°C

- MAK[ml/m³]: 50
- MAK[mg/m³]: 190
- Peak lim: II(2)
- Perc gr: C
- Perc abs: H

**Toluene-2,4-diamine**

[95-80-7]

The substance can occur simultaneously as vapour and aerosol.

VP[hPa]: 2.3×10⁻⁴ at 25°C

- MAK[ml/m³]: –
- MAK[mg/m³]: –
- Peak lim: –
- Perc abs: H
- Sens: Sh
- Carc cat: 2
- Muta cat: 3B

**Toluene-2,5-diamine**

[95-70-5]

The substance can occur simultaneously as vapour and aerosol.

VP[hPa]: 4.5×10⁻³ at 25°C

- Sens: Sh

**Toluene diisocyanates**

The substance can occur simultaneously as vapour and aerosol.

see section XII

- MAK[ml/m³]: 0.001
- MAK[mg/m³]: 0.007
- Peak lim: I(1)
- A momentary value of 0.005 ml/m³ (0.035 mg/m³) should not be exceeded.
- Perc gr: C
- Sens: Sah

- **Toluene-2,4-diisocyanate**

[584-84-9]

The substance can occur simultaneously as vapour and aerosol.

VP[hPa]: 0.011

- MAK[ml/m³]: –
- MAK[mg/m³]: –
- Peak lim: –
- Perc gr: –

**o-Toluidine**

[95-53-4]

The substance can occur simultaneously as vapour and aerosol.

VP[hPa]: 0.18

see section XII

- MAK[ml/m³]: –
- MAK[mg/m³]: –
- Peak lim: –
- Perc gr: –
- Perc abs: H
- Carc cat: 1
- Muta cat: 3A

**p-Toluidine**

[106-49-0]

The substance can occur simultaneously as vapour and aerosol.

VP[hPa]: 0.38 at 25°C

- MAK[ml/m³]: –
- MAK[mg/m³]: –
- Peak lim: –
- Perc gr: –
- Perc abs: H
- Sens: Sh
- Carc cat: 3

**2,4-Tolylenediamine → Toluene-2,4-diamine**

**Tolyl diiodomethyl sulfone → 4-(Diiodomethylsulfonyl)-toluene**

**Tremolite (fibrous dust) → Asbestos**

**Triazinetriyltriaminotrishexanoic acid**

[80584-91-4]
**Tribromomethane**  
[75-25-2] \(\text{CHBr}_3\)  
VP[hPa]: 7  
MAK[ml/m\(^3\)]: –  
MAK[mg/m\(^3\)]: –  
Peak lim: –  
Preg gr: –  
Carc cat: 3

**2,4,6-Tribromophenol**  
[118-79-6]  
The substance can occur simultaneously as vapour and aerosol.

see section IIb  
MAK[ml/m\(^3\)]: –  
MAK[mg/m\(^3\)]: –  
Peak lim: –  
Preg gr: –

**Tri-n-butylamine**  
[102-82-9]  
The substance can occur simultaneously as vapour and aerosol. Reaction with nitrosating agents can result in the formation of carcinogenic N-nitrosodi-n-butylamine, see Section III “Amines which form carcinogenic nitrosamines on nitrosation”.

\[
N(\text{CH}_2-\text{CH}_2-\text{CH}_2-\text{CH}_3)
\]

VP[hPa]: 0.12 at 25°C  
see section IIb  
MAK[ml/m\(^3\)]: –  
MAK[mg/m\(^3\)]: –  
Peak lim: –  
Preg gr: –

**Tributyl phosphate**  
[126-73-8]  
The substance can occur simultaneously as vapour and aerosol.

\[
O-P(\text{O}(\text{CH}_2)_3-\text{CH}_2)_3
\]

VP[hPa]: \(1.5 \times 10^{-3}\) at 25°C  
MAK[ml/m\(^3\)]: 1  
MAK[mg/m\(^3\)]: 11  
Peak lim: II(2)  
Preg gr: C  
Perc abs: H  
Carc cat: 4

**Tributyltin compounds → n-Butyltin compounds**

**Trichloroacetic acid**  
[76-03-9]  
see also sodium trichloroacetate  
The substance can occur simultaneously as vapour and aerosol.

\[
\text{Cl}_3\text{C-COOH}
\]

VP[hPa]: 0.1  
MAK[ml/m\(^3\)]: 5  
MAK[mg/m\(^3\)]: 38  
Peak lim: II(2)  
Preg gr: C  
classification in Pregnancy Risk Group C was re-evaluated in 2011 and confirmed  
Perc abs: H

**1,2,3-Trichlorobenzene**  
[87-61-6]  
MAK[ml/m\(^3\)]: 5  
MAK[mg/m\(^3\)]: 38  
Peak lim: II(2)  
Preg gr: C  
classification in Pregnancy Risk Group C was re-evaluated in 2011 and confirmed  
Perc abs: H

**1,2,4-Trichlorobenzene**  
[120-82-1]  
MAK[ml/m\(^3\)]: –  
MAK[mg/m\(^3\)]: –  
Peak lim: –  
Preg gr: –  
Perc abs: H  
Carc cat: 3

**1,3,5-Trichlorobenzene**  
[108-70-3]  
MAK[ml/m\(^3\)]: 5  
MAK[mg/m\(^3\)]: 38  
Peak lim: II(2)  
Preg gr: C  
classification in Pregnancy Risk Group C was re-evaluated in 2011 and confirmed  
Perc abs: H

**1,2,4-Trichlorobenzene**  
[120-82-1]  
MAK[ml/m\(^3\)]: –  
MAK[mg/m\(^3\)]: –  
Peak lim: –  
Preg gr: –  
Perc abs: H  
Carc cat: 3

**2,3,4-Trichloro-1-butene**  
[2431-50-7]  
MAK[ml/m\(^3\)]: –  
MAK[mg/m\(^3\)]: –  
Peak lim: –  
Preg gr: –  
Perc abs: H  
Carc cat: 2
1,1,1-Trichloroethane
[71-55-6]
H₂C-CCl₃
VP[hPa]: 133
see section XII
MAK[ml/m³]: 100
MAK[mg/m³]: 550
Peak lim: II(1)
Preg gr: C
Perc abs: H

1,1,2-Trichloroethane
[79-00-5] C₂H₂-CHCl₂
VP[hPa]: 25
MAK[ml/m³]: 1
MAK[mg/m³]: 5.5
Peak lim: I(2)
Preg gr: D
Perc abs: H
Carc cat: 3

Trichloroethylene
[79-01-6] C₂H₄-C=CCl₂
VP[hPa]: 77
see section XII
MAK[ml/m³]: –
MAK[mg/m³]: –
Peak lim: –
Preg gr: –
Perc abs: H
Carc cat: 1
Muta cat: 3B

Trichlorofluoromethane (FC-11)
[75-69-4] C₃Cl₃F
VP[hPa]: 889
MAK[ml/m³]: 1000
MAK[mg/m³]: 5700
Peak lim: II(2)
Preg gr: C

Trichloromethane → Chloroform
1-Trichloromethylbenzene → Benzyl trichloride
Trichloronaphthalenes → Chlorinated naphthalenes
Trichloronitrile → Chloropicrin

2,4,5-Trichlorophenol
[95-94-4]
The substance can occur simultaneously as vapour and aerosol.

VP[hPa]: 8×10⁻³ at 25°C
see section IIb
MAK[ml/m³]: –
MAK[mg/m³]: –
Peak lim: –
Preg gr: –

2,4,5-Trichlorophenoxycetic acid
[93-76-5]

\[
\text{Cl}_2\text{C}-\text{O}-\text{C}-\text{OH}
\]

including salts and esters
MAK[ml/m³]: 2 I
Peak lim: II(2)
Preg gr: C
Perc abs: H

1,2,3-Trichloropropene
[96-18-4] C₃H₂-CHCl-CH₃Cl
VP[hPa]: 4.5
MAK[ml/m³]: –
MAK[mg/m³]: –
Peak lim: –
Preg gr: –
Perc abs: H
Carc cat: 2

α,α,α-Trichlortoluene → Benzyl trichloride

1,1,2-Trichloro-1,2,2-trifluoroethane (FC-113)
[76-13-1] Cl₂C-CCl₂F
VP[hPa]: 360
MAK[ml/m³]: 500
MAK[mg/m³]: 3900
Peak lim: II(2)
Preg gr: D

Tricresyl phosphate, sum of all o-isomers
[78-30-8]
The substance can occur simultaneously as vapour and aerosol.

MAK[ml/m³]: 0.001
MAK[mg/m³]: 0.015
Peak lim: II(8)
Preg gr: D
Perc abs: H
Carc cat: 3

Tricresyl phosphate, isomers, “free of o-isomers”
[1330-78-5; 78-32-0]

see section Xc
MAK[ml/m³]: 5 I
Peak lim: II(2)
Preg gr: C

Tridyline → Silica, crystalline
Triethanolamine
[102-71-6] \( \text{N} (\text{CH}_2 - \text{CH}_2 \text{OH})_3 \)
VP[hPa]: 4.8×10⁻⁶ at 25°C
see section Xc
MAK[mg/m³]: 1 I
Peak lim: I(I)
Preg gr: C

Triethylamine
[121-44-8]
Reaction with nitrosating agents can result in the formation of carcinogenic N-nitrosodiethylamine, see Section III "Amines which form carcinogenic nitrosamines on nitrosation".
VP[hPa]: 72
MAK[mg/m³]: 1 I
Peak lim: I(2)
Preg gr: D
Perc abs: H

1,2,4-Triethylbenzene
[877-44-1]
The substance can occur simultaneously as vapour and aerosol.

Triethylene glycol
[112-27-6]
The substance can occur simultaneously as vapour and aerosol. Because formation of a mist is possible, exposure should be minimized for reasons of occupational safety and hygiene.

\( \text{HOCH}_2 (\text{CH}_2 \text{O})_2 \text{CH}_2 \text{OH} \)

VP[hPa]: 0.003
MAK[mg/m³]: 1000 I
Peak lim: II(2)
Preg gr: B

Triethylene glycol n-butyl ether
[143-22-6]
The substance can occur simultaneously as vapour and aerosol.

\( \text{HO}_2 (\text{CH}_2 \text{O})_2 (\text{CH}_2 \text{O})_2 \text{CH}_2 \text{CH}_2 \text{O} \)

VP[hPa]: 3.3×10⁻³ at 25°C
see section IIB and Xc
MAK[mg/m³]: –
MAK[mg/m³]: –
Peak lim: –
Preg gr: –

Triethylene glycol dimethacrylate
[109-16-0] \( \text{O} - \text{(CH}_2 \text{CH}_2 \text{O})_2 \text{OC} - \text{(CH}_3 \text{C} - \text{CH})_2 \text{CH}_2 \text{C} - \text{OC} - \text{(CH}_3 \text{C} - \text{CH})_2 \text{CH}_2 \text{C} \)

see section IV
Sens: Sh

Triethylene glycol monomethyl ether
[112-35-6]
The substance can occur simultaneously as vapour and aerosol.
\( \text{CH}_2 (\text{O} - \text{CH}_2 - \text{CH}_2 )_2 \text{OH} \)
VP[hPa]: 4.7×10⁻³ at 25°C (calculated value)
see section Xc
MAK[mg/m³]: 50 I
Peak lim: II(2)
Preg gr: C

Triethylene tetramine
[112-24-3]
The substance can occur simultaneously as vapour and aerosol.
\( \text{NH}_2 - [\text{CH}_2 - \text{NH}]_2 - (\text{CH}_2 )_2 - \text{NH}_2 \)

1,3,5-Triethylhexahydro-1,3,5-triazine
[7779-27-3]
Releases formaldehyde

\( \text{R} = \text{CH}_2 \text{CH}_3 \)

1,1,1-Trifluoro-2,2-dichloroethane → 2,2-Dichloro-1,1,1-trifluoroethane (FC-123)

Triglycidyl-p-aminophenol
[5026-74-4]

Sens: Sh
1,3,5-Triglycidyl isocyanurate (mixture of isomers)
[2451-62-9]

see section IV
Sens: Sah

Triisobutyl phosphate
[126-71-6]
The substance can occur simultaneously as vapour and aerosol.

VP[hPa]: 0.02
see section IIb
MAK[ml/m³]: –
MAK[mg/m³]: –
Peak lim: –
Preg gr: –
Sens: Sh

Trimellitic anhydride
[552-30-7]
(fume)

MAK[mg/m³]: 0.04 R
Peak lim: I(1)
Sens: Sa

Trimethylamine
[75-50-3]
Reaction with nitrosating agents can result in the formation of carcinogenic N-nitrosodimethylamine, see Section III “Amines which form carcinogenic nitrosamines on nitrosation”.

VP[hPa]: 1900
MAK[ml/m³]: 2
MAK[mg/m³]: 4.9
Peak lim: I(2)
A momentary value of 5 ml/m³ (12 mg/m³) should not be exceeded.
Preg gr: C

2,4,5-Trimethylaniline
[137-17-7]
The substance can occur simultaneously as vapour and aerosol.

VP[hPa]: 0.057 at 25°C
MAK[ml/m³]: –
MAK[mg/m³]: –
Peak lim: –
Preg gr: –
Perc abs: H
Carc cat: 3

Trimethylbenzene (all isomers)

VP[hPa]: 2-6
see section XII
MAK[ml/m³]: 20
MAK[mg/m³]: 100
Peak lim: II(2)
Preg gr: C
– 1,2,3-Trimethylbenzene
[526-73-8]
– 1,2,4-Trimethylbenzene
[95-63-6]
– 1,3,5-Trimethylbenzene
[108-67-8]

3,5,5-Trimethyl-2-cyclo-1-hexenone → Isophorone
3,7,11-Trimethyl-2,6,10-dodecatrien-1-ol → Farnesol
3,5,5-Trimethylhexanoic acid → Isononanoic acid

Trimethylhydroquinone
[700-13-0]

see section IV
Sens: Sh

Trimethylolpropane triacrylate
[15625-89-5]

see section IV
Sens: Sh

Trimethylpentane (all isomers)

MAK[ml/m³]: 100
MAK[mg/m³]: 470
Peak lim: II(2)
Preg gr: D

Trimethyl phosphate
[512-56-1]
The substance can occur simultaneously as vapour and aerosol.

VP[hPa]: 0.59
MAK[ml/m³]: –
MAK[mg/m³]: –
Peak lim: –
Preg gr: –
Perc abs: H
Carc cat: 3
Muta cat: 2
Trimethylphosphite  
[121-45-9]  
\((\text{H}_2\text{CO})_3\text{P}\)  
see section IIb  
MAK[m/l/m³]: –  
MAK[mg/m³]: –  
Peak lim: –  
Preg gr: –  
Perc abs: H  

Trimethylquinone  
[935-92-2]  
see section IV  
Sens: Sh  

Trimethyltin compounds → Methyltin compounds  

2,4,7-Trinitrofluorenone  
[129-79-3]  
see section Xc  
MAK[m/l/m³]: –  
MAK[mg/m³]: –  
Peak lim: –  
Preg gr: –  
Carc cat: 3  

2,4,6-Trinitrophenol → Picric acid  

2,4,6-Trinitrophenylmethylnitramine → N-Methyl-N,2,4,6-tetranitroaniline  

2,4,6-Trinitrotoluene  
[118-96-7]  
see section XII  
MAK[m/l/m³]: –  
MAK[mg/m³]: –  
Peak lim: –  
Preg gr: –  
Perc abs: H  
Sens: Sh  
Carc cat: 2  
Muta cat: SB  

★ Triphenyl monothiophosphate  
[597-82-0]  
VP[hPa]: <0.00001  
see section Xc  
MAK[mg/m³]: 20 I  
Peak lim: II(2)  
Preg gr: D  

★ Triphenyl phosphate  
[115-86-6]  
\((\text{C}_6\text{H}_5\text{O})_3\text{PC}\)  
VP[hPa]: 1×10⁻⁵ at 25°C (calculated value)  
see section Xc  
MAK[m/l/m³]: –  
MAK[mg/m³]: 10 I  
Peak lim: II(2)  
Preg gr: C  

Triphenyl phosphate, isopropylated  
[68937-41-7]  
see section Xc  
MAK[mg/m³]: 1 I  
Peak lim: II(2)  
Preg gr: C  

Triphenyl phosphine  
[603-35-0]  
P\((\text{C}_6\text{H}_5\text{H})\)  
VP[hPa]: 1.4E5  
MAK[mg/m³]: 5 I  
Peak lim: II(2)  
Preg gr: C  
Sens: Sh  

Triplochiton scleroxylon → Woods  

Tripropylene glycol diacrylate  
[42978-66-5]  
see section IV  
Sens: Sh  

Tris(2,4-ditert-butylphenyl) phosphite  
[31570-04-4]  
see section IIb and Xc  
MAK[m/l/m³]: –  
MAK[mg/m³]: –  
Peak lim: –  
Preg gr: –  

N,N',N''-Tris(β-hydroxyethyl)hexahydro-1,3,5-triazine  
[4719-04-4]  
releases formaldehyde  
see section IIb and Xc  
MAK[m/l/m³]: –  
MAK[mg/m³]: –  
Peak lim: –  
Preg gr: –  
Sens: Sh
Tris[(2- or 4-)C9-C10-isoalkylphenyl] phosphorothioate

[126019-82-7]

\( S=\text{P(O-C}_9\text{H}_2\text{C}_9\text{H}_2\text{)}\)

VP[hPa]: \(2.8 \times 10^{-10}\) at 25°C (extrapolated)

see section IIb and Xc

MAK[ml/m³]: –
MAK[mg/m³]: –
Peak lim: –
Preg gr: –

Tris(nonylphenyl) phosphate

[26523-78-4]

see section IIb and Xc

MAK[ml/m³]: –
MAK[mg/m³]: –
Peak lim: –
Preg gr: –

Trypsin and Chymotrypsin

[9002-07-7; 9004-07-3]

see section IV

Sens: Sa

Tungsten

[7440-33-7]

W

and its compounds (as W)

see section IIb

MAK[ml/m³]: –
MAK[mg/m³]: –
Peak lim: –
Preg gr: –

Tungsten carbide \(\rightarrow\) Hard metal containing tungsten carbide and cobalt

Turpentine

[8006-64-2]

VP[hPa]: 6.6

MAK[ml/m³]: 5
MAK[mg/m³]: 28
Peak lim: II(2)
Preg gr: D
Perc abs: H
Sens: Sh

Uranium

[7440-61-1]

U

and its hardly soluble inorganic compounds

see section XII

MAK[mg/m³]: –

The threshold value of the 'Strahlenschutzkommission' (Commission on Radiological Protection) of 20 mSv per year or 400 mSv per working lifetime corresponds to about 25 \(\mu\)g uranium/m³ for poorly soluble uranium compounds and 250 \(\mu\)g uranium/m³ for soluble compounds (MMAD of 5 \(\mu\)m). The value for soluble uranium compounds does not provide protection against nephrotoxicity.

Peak lim: –
Preg gr: –
Perc abs: H
Carc cat: 3
Muta cat: 3A

Urethane \(\rightarrow\) Carbamic acid ethyl ester

Utile (Entandrophragma utile) \(\rightarrow\) Woods

Vanadium

[7440-62-2]

V

and its inorganic compounds (inhalable fraction)

see section XII

MAK[ml/m³]: –
MAK[mg/m³]: –
Peak lim: –
Preg gr: –

Vinyl acetate

[108-05-4]

\(\text{H}_2\text{C}=\text{CHOOC}_2\text{H}_3\)

VP[hPa]: 120

MAK[ml/m³]: 10
MAK[mg/m³]: 36
Peak lim: I(1)

A momentary value of 20 ml/m³ (71 mg/m³) should not be exceeded.

Preg gr: C
Perc abs: H
Carc cat: 4

Vinylbutyrolactam \(\rightarrow\) N-Vinyl-2-pyrrolidone

Vinylcarbazole

[1484-13-5]

see section IV

Sens: Sh

Vinyl chloride

[75-01-4]

\(\text{H}_2\text{C}=\text{CHCl}\)

see section XII

MAK[ml/m³]: –
MAK[mg/m³]: –
Peak lim: –
Preg gr: –
Carc cat: 1
4-Vinylcyclohexene  
[100-40-3]

\[ \text{VP[hPa]}: 20 \]
\[ \text{MAK}[\text{ml/m}^3]: – \]
\[ \text{MAK}[\text{mg/m}^3]: – \]
\[ \text{Peak lim}: – \]
\[ \text{Preg gr}: – \]
\[ \text{Perc abs}: \text{H} \]
\[ \text{Carc cat}: 2 \]

4-Vinyl-1,2-cyclohexene diepoxide  
→ 4-Vinyl-1-cyclohexene dioxide

4-Vinyl-1-cyclohexene dioxide  
[106-87-6]

The substance can occur simultaneously as vapour and aerosol.

\[ \text{VP[hPa]}: 0.13 \]
\[ \text{MAK}[\text{ml/m}^3]: – \]
\[ \text{MAK}[\text{mg/m}^3]: – \]
\[ \text{Peak lim}: – \]
\[ \text{Preg gr}: – \]
\[ \text{Perc abs}: \text{H} \]
\[ \text{Carc cat}: 2 \]

Vinyl ethyl ether → Ethyl vinyl ether

Vinyldene chloride  
[75-35-4]  \[ \text{H}_2\text{C}-\text{Cl}_2 \]

\[ \text{VP[hPa]}: 667 \]
\[ \text{MAK}[\text{ml/m}^3]: 2 \]
\[ \text{MAK}[\text{mg/m}^3]: 8.0 \]
\[ \text{Peak lim}: \text{II}(2) \]
\[ \text{Preg gr}: \text{C} \]
\[ \text{Carc cat}: 3 \]

Vinylidene fluoride → 1,1-Difluoroethylene

Vinyl isobutyl ether → iso-Butyl vinyl ether

Vinyl methyl ether → Methyl vinyl ether

N-Vinyl-2-pyrrolidone  
[88-12-0]

The substance can occur simultaneously as vapour and aerosol.

\[ \text{VP[hPa]}: 0.15 \text{ at } 25^\circ\text{C} \]
\[ \text{MAK}[\text{ml/m}^3]: 0.01 \]
\[ \text{MAK}[\text{mg/m}^3]: 0.047 \]
\[ \text{Peak lim}: \text{II}(2) \]
\[ \text{Preg gr}: \text{C} \]
\[ \text{Perc abs}: \text{H} \]
\[ \text{Carc cat}: 4 \]

Vinyl toluene → Methyl styrene (all isomers)

Warfarin  
[81-81-2]

and sodium warfarin [129-06-6]

The substance can occur simultaneously as vapour and aerosol.

\[ \text{VP[hPa]}: 0.09 \]
\[ \text{MAK}[\text{ml/m}^3]: 0.0016 \]
\[ \text{MAK}[\text{mg/m}^3]: 0.02 \]
\[ \text{MAK value for sodium warfarin} 0.02 \text{ mg/m}^3 \]
\[ \text{Peak lim}: \text{II}(8) \]
\[ \text{Preg gr}: \text{B} \]
\[ \text{Perc abs}: \text{H} \]

Western red cedar (Thuja plicata) → Woods

Wheat → Cereal flour dusts

White mineral oil (pharmaceutical)  
[8042-47-5]

see section Xc

\[ \text{MAK}[\text{mg/m}^3]: 5 \text{ R} \]
\[ \text{Peak lim}: \text{II}(4) \]
\[ \text{Preg gr}: \text{C} \]

White spirit, dearomatized → Naphtha (petroleum)

Wollastonite  
[13983-17-0]  \[ \text{CaSiO}_3 \]

see section IIb

\[ \text{MAK}[\text{ml/m}^3]: – \]
\[ \text{MAK}[\text{mg/m}^3]: – \]
\[ \text{Peak lim}: – \]
\[ \text{Preg gr}: – \]

Wood dust (beech) → Beech wood dust

Wood dust (oak) → Oak wood dust

Wood dust (except beech and oak wood dust)

\[ \text{MAK}[\text{ml/m}^3]: – \]
\[ \text{MAK}[\text{mg/m}^3]: – \]
\[ \text{Peak lim}: – \]
\[ \text{Preg gr}: – \]
\[ \text{Carc cat}: 3 \]

Wood ether → Dimethyl ether
### Woods

See section IV

- **Acacia melanoxylon R.Br.**
  Australian blackwood
  Sens: Sh

- **Brya ebenus DC.**
  cocus wood
  Sens: Sh

- **Calocedrus decurrens (Torr.) Florin**
  incense cedar, pencil cedar
  Sens: –

- **Chlorophora excelsa (Welw.) Benth. & Hook**
  iroko, kambala
  Sens: Sh

- **Dalbergia latifolia Roxb.**
  East Indian rosewood, Bombay blackwood
  Sens: Sh

- **Dalbergia nigra Allem.**
  Brazilian rosewood
  Sens: Sh

- **Dalbergia retusa Hemsl.**
  cocobolo, rosewood
  Sens: Sh

- **Dalbergia stenonii Standley**
  Honduras rosewood
  Sens: Sh

- **Diospyros celebica Bakh.**
  Macassar ebony, coromandel
  Sens: –

- **Diospyros crassiflora Hiern.**
  African ebony
  Sens: –

- **Diospyros ebenum Koenig**
  Ceylon ebony, Indian ebony
  Sens: –

- **Diospyros melanoxylon Roxb.**
  ebony
  Sens: –

- **Distemonanthus benthamianus Baill.**
  ayan
  Sens: Sh

- **Entandrophragma angolense C.DC.**
  gedu nohor, edinim, tiama
  Sens: –

- **Entandrophragma candollei Harms**
  heavy sapele, omu
  Sens: –

- **Entandrophragma cylindricum Sprague**
  sapele

- **Entandrophragma utile Sprague**
  utile
  Sens: –

- **Gonystylus bancanus (Miq.) Baill.**
  ramin
  Sens: –

- **Grevillea robusta A.Cunn.**
  Australian silky oak
  Sens: Sh

- **Khaya anthotheca C.DC.**
  African mahogany
  Sens: Sh

- **Khaya grandifoliola C.DC.**
  African mahogany, big leaf mahogany
  Sens: –

- **Khaya ivorensis A.Chev.**
  African mahogany, Grand Bassam mahogany
  Sens: –

- **Khaya senegalensis A.Juss.**
  African mahogany, Senegal mahogany
  Sens: –

- **Machaerium scleroxylon Tul.**
  pao ferro, Santos rosewood
  Sens: Sh

- **Mansonia altissima A.Chev.**
  mansonia, pruno, bété
  Sens: Sh

- **Paratecoma peroba (Record) Kuhlm.**
  ipe peroba
  Sens: Sh

- **Quercus petraea (Matuschka) Liebl.**
  durmast oak, sessile oak
  Sens: –

- **Quercus robur L.**
  European oak, common oak, pedunculate oak
  Sens: –

- **Swietenia macrophylla King**
  American mahogany
  Sens: –

- **Swietenia mahagoni (L.) Jacq.**
  Caribbean mahogany, Cuban mahogany
  Sens: –

- **Tabebuia avellanedae (Griseb.) Lor.**
  lapacho, ipe
  Sens: –

- **Tabebuia serratifolia Nichols**
  bethahara, ipe
  Sens: –

- **Tectona grandis L.f.**
  teak
Sens: Sh
– Terminalia ivorensis A.Chev.
  framiré, idigbo
  Sens: –
– Terminalia superba Engl. u. Diels
  fraké, limba, afara, white afara
  Sens: –
– Thuja occidentalis L.
  arborvitae, eastern white cedar, northern white cedar
  Sens: –
– Thuja plicata (D.Don.) Donn.
  western red cedar, giant arborvitae, shinglewood
  Sens: –
– Tieghemella africana A.Chev.
  douka
  Sens: –
– Tieghemella heckelii Pierre
  makoré, “cherry mahogany”, African “cherry”
  Sens: –
– Triplochiton scleroxylon K.Schum.
  obeche, wawa, African whitewood
  Sens: Sah

**Xylanases**

[37278-89-0]
see section IV
Sens: Sa

**Xylene (all isomers)**

[1330-20-7]

At high levels of physical activity the observance of the BAT value should be checked regularly by biological monitoring.

VP[hPa]: 7-9
see section XII

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>220</td>
<td>II(2)</td>
<td>D</td>
<td>H</td>
<td>3</td>
<td>3B</td>
</tr>
</tbody>
</table>

2,4-Xylidine

[95-68-1]
The substance can occur simultaneously as vapour and aerosol.

VP[hPa]: 0.13 at 25°C

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>H</td>
<td>2</td>
</tr>
</tbody>
</table>

2,6-Xylidine

[87-62-7]
The substance can occur simultaneously as vapour and aerosol.

VP[hPa]: 0.04
see section IV

Sens: Sh
Yttrium
[7440-65-5] Y
and its compounds
see section IIb
MAK[ml/m³]: –
MAK[mg/m³]: –
Peak lim: –
Preg gr: –

Zeolites (fibrous dust) → Erionite

Zeolites, synthetic (non-fibrous)
[1318-02-1]
see section IIb
MAK[ml/m³]: –
MAK[mg/m³]: –
Peak lim: –
Preg gr: –

Zinc, O,O’-di-2-ethylhexyl dithiophosphate
[4259-15-8]
CH₂(CH₃)₂S[(H₂C-CH₂-CH₂-O)₂P]₂Zn
see section IIb and Xc
MAK[ml/m³]: –
MAK[mg/m³]: –
Peak lim: –
Preg gr: –

Zinc chromate → Chromium(VI) compounds

Zinc
[7440-66-6] Zn
and its inorganic compounds
(inhalable fraction)
MAK[mg/m³]: 2 I
Peak lim: I(2)
Zinc chloride: Peak limitation category I(1)
Preg gr: C
classification in Pregnancy Risk Group C was re-evaluated in 2011 and confirmed

Zinc
[7440-66-6] Zn
and its inorganic compounds
(respirable fraction)
MAK[mg/m³]: 0.1 R
Peak lim: I(4)
Preg gr: C
classification in Pregnancy Risk Group C was re-evaluated in 2011 and confirmed

Zinc molybdate → Molybdenum

Zinc pyrithione
[13463-41-7]

Ziram
[137-30-4]

Zirconium
[7440-67-7] Zr
and its compounds (except zirconium dioxide)
see section IIb
MAK[mg/m³]: –
Peak lim: –
Preg gr: –

Zirconium dioxide
[1314-23-4; 12036-23-6]
(respirable fraction)
except for ultrafine particles; see section Vf
ZrO₂

see section Vf
MAK[mg/m³]: 0.3 R
multiplied with the material density
Peak lim: II(8)
Preg gr: C
Carc cat: 4
b. Substances for which no MAK value can be established at present

For a number of the substances examined by the Commission, studies of the effects in man or in experimental animals have yielded insufficient information for the establishment of MAK values. These substances are listed below. The toxicological documentation has been published by the Commission in the monograph collection “Toxikologisch-arbeitsmedizinische Begründung von MAK-Werten”. Some of these reviews are available in English (obtainable online under https://mak-dfg.publisso.de or https://onlinelibrary.wiley.com/doi/book/10.1002/3527600418 (up to 2019).

Acetoacetic acid ethyl ester [141-97-9]
Acrylic acid hydroxypropyl ester (all isomers) [25584-83-2]
3-Aminomethyl-3,5,5-trimethyl-cyclohexylamine (Isophorone diamine) [2855-13-2]
2-Aminopyridine [504-29-0]
Ammonium sulfamate [7773-06-0]
Arsine [7784-42-1]
Benzaldehyde [100-52-7]
Benzalkonium chloride [8001-54-5]
Bisphenol A diglycidyl ether [1675-54-3]
Boron oxide [1303-86-2]
Boron trifluoride [7637-07-2]
Bromine [7726-95-6]
sec-Butyl acetate [105-46-4]
sec-Butyl alcohol [78-92-2]
2-tert-Butyl-p-cresol [2409-55-4]
p-tert-Butyl toluene [98-51-1]
y-Butyrolactone [96-48-0]
Camphor [76-22-2]
Chlorinated biphenyl oxides several CAS Nos, e.g. [55720-99-5]
Chlorinated biphenyl oxides form a group of compounds with different degrees and positions of chlorine substitution. Chlorinated biphenyl oxides with low chlorine content can occur as a particle-vapour mixture, whereas chlorinated biphenyl oxides with a large quantity of chlorine occur only as particles.
Chlorinated naphthalenes
Chlorinated naphthalenes form a group of compounds with different degrees and positions of chlorine substitution. Chlorinated naphthalenes with low chlorine content can occur as a particle-vapour mixture, whereas chlorinated naphthalenes with a large quantity of chlorine occur only as particles.
Chlorine trifluoride [7790-91-2]
Chloroacetyl chloride [79-04-9]
o-Chloroaniline [95-51-2]
m-Chloroaniline [108-42-9]
Chlorobenzoic acid (all isomers)
4-Chloromethyl-biphenyl [1667-11-4]
m-Chloronitrobenzene [121-73-3]
1-Chloro-1-nitropropane [600-25-9]
Chromium carbonyl [13007-92-6]
Chromium(III) compounds
Cyanogen chloride [506-77-4]
Cyclohexanol [108-93-0]
Cyclohexene [110-83-8]
Cyclopentadiene [542-92-7]
II List of Substances

Demeton [8065-48-3]
see Section XII, List of BAT Values, Acetylcholinesterase inhibitors
Desflurane [57041-67-5]
Diallyl phthalate [131-17-9]
Diborane [19287-45-7]
Dibromodifluoromethane [75-61-6]
3,4-Dichloroaniline [95-76-1]
1,1-Dichloro-1-nitroethane [594-72-9]
2,2-Dichloropropionic acid [75-99-0]
2,2-Dichloropropionic acid, sodium salt [127-20-8]
Dicyanodiamide [461-58-5]
Dicyclohexylamine [101-83-7]
Reaction with nitrosating agents can result in the formation of carcinogenic N-nitrosodicyclohexylamine, see Section III “Amines which form carcinogenic nitrosamines on nitrosation”.
Dicyclohexylamine nitrite [3129-91-7]
Diethylene glycol dinitrate [693-21-0]
Diisobutyl ketone [108-83-8]
Diketene [674-82-8]
see documentation “Ketene”
Dimethyl adipate [627-93-0] see also dicarboxylic acid (C4-C6) dimethylester
Dimethylaminopropionitrile [1738-25-6]
Ethylenediamine [107-15-3]
Avoid exposure to mixtures with iron compounds (formation of FeEDTA).
Ethylenediaminetetraacetic acid (EDTA) [60-00-4]
Avoid exposure to mixtures with iron compounds (formation of FeEDTA).
2-Ethylhexanoic acid [149-57-5]
N-Ethylmorpholine [100-74-3]
Ethyltin compounds
Ethyl vinyl ether [109-92-2]
Ferbam [14484-64-1]
Fluorine [7782-41-4]
Formamide [75-12-7]
Germanium tetrahydride [7782-65-2]
Gold [7440-57-5] and its inorganic compounds
Hafnium [7440-58-6] and its compounds
Hexachlorocyclopentadiene [77-47-4]
sec-Hexyl acetate [108-84-9]
Hydroxyacetic acid butyl ester [7397-62-8]
2-Hydroxyethyl methacrylate [868-77-9]
3-Hydroxy-2-naphthalene-carboxylic acid [92-70-6]
Imidazole [288-32-4]
Iodine [7553-56-2] and inorganic iodides
Isoflurane [26675-46-7]
4-Isopropylphenyl isocyanate [31027-31-3]
Ketene [463-51-4]
D,L-Limonene [138-86-3] and similar mixtures
L-Limonene [5989-54-8]
Lithium [7439-93-2] and highly irritating lithium compounds (as lithium amide, hydroxide, nitride, oxide, tetrahydroaluminate, tetrahydroborate)
Magnesium oxide fume [1309-48-4]
3-Methoxy-n-butyl acetate [4435-53-4]
Methyl acetylene [74-99-7]
Methylcyclohexanol (all isomers) [25639-42-3]
1-Methylcyclohexan-2-one [583-60-8]
Methyl vinyl ketone [78-94-4]
Molybdenum [7439-98-7] and its compounds apart from molybdenum trioxide
Montmorillonite [1318-93-0] and Bentonite [1302-78-9]
quartz content must be considered separately
2-(4-Morpholinylmercapto)benzothiazole [102-77-2]
Nickel titanic yellow pigment [8007-18-9]
Nicotine [54-11-5]
Nitric acid [7697-37-2]
Osmium tetroxide [20816-12-0]
Palladium [7440-05-3] and palladium compounds
2-Pentanone [107-87-9]
Perchloromethyl mercaptan [594-42-3]
1H,1H,2H-Perfluorohexene [19430-93-4]
Phosphorus, red [7723-14-0]
Phosphorus pentasulfide [1314-80-3]
o-Phthalic acid [88-99-3]
Phthalic anhydride [85-44-9]
Platinum compounds (Chloroplatinates)
A peak concentration of 2 μg/m³ should not be exceeded.
n-Propyl nitrate [627-13-4]
Pyrethrum [8003-34-7]
Resorcinol [108-46-3]
Rotenone [83-79-4]
Sevoflurane [28523-86-6]
Silicon carbide [409-21-2] (without fibres)
Sodium hydroxide [1310-73-2]
Stibine [7803-52-3]
Strontium [7440-24-6] and its inorganic compounds
Strychnine [57-24-9]
Sulfur monochloride [10025-67-9]
Sulfur pentafluoride [5714-22-7]
Tellurium [13494-80-9] and its inorganic compounds
1,1,2,2-Tetrabromoethane [79-27-6]
Tetramethyl succinonitrile [3333-52-6]
Tetramethyl urea (TMU) [632-22-4]
Thallium, soluble compounds
Thioglycolic acid [68-11-1]
Tin [7440-31-5] and its inorganic compounds
2,4,6-Tribromophenol [118-79-6]
Tri-n-butylamine [102-82-9]
Reaction with nitrosating agents can result in the formation of carcinogenic N-nitrosodi-n-butylamine, see Section I II

Amines which form carcinogenic nitrosamines on nitrosation

2,4,5-Trichlorophenol [95-95-4]
Triisobutyl phosphate [126-71-6]
Trimethylphosphite [121-45-9]
Tungsten [7440-33-7] and its compounds (as W)
Wollastonite [13983-17-0] (fibrous dust)
Yttrium [7440-65-5] and its compounds
Zeolites, synthetic (non-fibrous) [1318-02-1]
Zinc pyrithione [13463-41-7]
Zirconium [7440-67-7] and its compounds (except zirconium dioxide)

Metal-working fluids, hydraulic fluids and other lubricants
(see Section Xc)

Abietic acid [514-10-3]
also includes disproportionation and transposition products.
Alkyl amines, C11–14-branched, monohexyl and dihexyl phosphates [80939-62-4]
Alkyl benzenesulfonates C10-C14, linear [69669-44-9; 85117-50-6]
Alkyl ether carboxylic acids
2-Amino-2-ethyl-1,3-propanediol [115-70-8]
1-Amino-2-propanol [78-96-6]
Aminotris(methylenephosphonic acid) [6419-19-8] and its sodium salts
Azelaic acid [123-99-9]
Behenic acid [112-85-6]
1,2-Benzisothiazol-3(2H)-one [2634-33-5]
Benzyl alcohol mono(poly)hemiformal [14548-60-8]
releases formaldehyde
N,N-Bis(2-ethylhexyl)-(1,2,4-triazole-1-yl)methanamine [91273-04-0]
1,3-Bis(hydroxymethyl)urea [140-95-4]
releases formaldehyde
Bithionol [97-18-7]
2-Bromo-2-nitro-1,3-propanediol [52-51-7]
use forbidden as component of metal-working fluids and corrosion inhibitors: see “GefStoffV 2010, Anhang II (zu §16 Absatz 2), Nr. 4”

★ 2-Butyl-1,2-benzisothiazolin-3-one [4299-07-4]
Calcium bis(dinonylnaphthalenesulphonate) [57855-77-3]
5(or 6)-Carboxy-4-hexylcyclohex-2-ene-1-octanoic acid [53980-88-4]
2-Chloroacetamide [79-07-2]
p-Chloro-m-cresol [59-50-7]
Chlorothalonil [1897-45-6]
Citric acid alkali metal salts
The MAK value for citric acid (2 mg/m³) protects from irritation, a higher value for alkali metal salts is not justifiable.
Dibenzyl disulfide [150-60-7]
2,2-Dibromo-2-cyanacetamide [10222-01-2]
1,2-Dibromo-2,4-dicyanobutane [35691-65-7]
3-(3,5-Di-tert-butyl-4-hydroxyphenyl)-N'-[3-(3,5-di-tert-butyl-4-hydroxyphenyl)prop-anoyl]propaneydrazide [32687-78-8]
2,6-Di-tert-butylphenol [128-39-2]
Di-n-butyl phosphonate [1809-19-4] see also Di-n-octyl phosphonate
Diethylenetriaminepenta(methyleneephosphonic acid) [15827-60-8] and its sodium salts [22042-96-2]
1,2-Dihydro-2,2,4-trimethyl-quinoline polymer [26780-96-1]
4-(Diiodomethylsulfonyl)toluene [20018-09-1]
1,3-Dimethylol-5,5-dimethyl hydantoin [6440-58-0]
4,4'-Dioctylidiphenylamine [101-67-7]
Di-n-octyl phosphonate [1809-14-9] see also Di-n-butyl phosphonate
Diphenylamine, octylated (Benzenamine, N-phenyl-, reaction products with 2,4,4-trimethylpentene) [68411-46-1]
Diphenylamine, reaction products with styrene and 2,4,4-trimethylpentene [68921-45-9]
2,2'-Dithiobis(N-methylbenzamide) [2527-58-4]
Dodecanedioic acid [693-23-2]
1-Dodecanol [112-53-8]
5-Ethyl-3,7-dioxa-1-azabicyclo[3.3.0]octane (EDAO) [7747-35-5]
releases formaldehyde
2-Ethyl-1,3-hexanediol [94-96-2]
1-Hexadecanol [36653-82-4]
Hexamethylenetetramine [100-97-0]
releases formaldehyde
1-Hexanol [111-27-3]
2-Hexyl-1-decanol [2425-77-6]
1-Hydroxyethyl-2-heptadecenyl-imidazoline [21652-27-7]
1-Hydroxyethylidene-1,1-diphosphonic acid [2809-21-4] and its sodium and potassium salts
2-Hydroxymethyl-2-nitro-1,3-propanediol [126-11-4]
use forbidden as component of metal-working fluids and corrosion inhibitors: see “GefStoffV 2010, Anhang II (zu §16 Absatz 2), Nr. 4”
12-Hydroxystearic acid [106-14-9]
Isocapronic acid [3302-10-1] [26896-18-4]
Isooctadecanol [27458-93-1]
Isotridecanol [27458-92-0]
Lithium-12-hydroxystearate [7620-77-1]
Lithium stearate [4485-12-5]
Methyl-1H-benzotriazole [29385-43-1]
Methyldiethanolamine [105-59-9]
4,4'-Methylene-bis(2,6-di-tert-butylphenol) [118-82-1]
N,N'-Methylene-bis(5-methylazoxalolidine) [66204-44-2]
4,4'-Methylenedimorpholine [5625-90-1]
releases formaldehyde
2-Methyl-4-isothiazolin-3-one [2682-20-4]
Myristic acid [544-63-8]
3-Nitrobenzoic acid [121-92-6]
★ (4-Nonylphenoxy)acetic acid [3115-49-9]
1-Octadecanol [112-92-5]
2-Octyl-1-dodecanol [5333-42-6]
Oleic acid [112-80-1]
Oleyl alcohol [143-28-2]
Palmitic acid [57-10-3]
Petroleum sulfonates, sodium salts [68608-26-4]
Phenothiazine [92-84-2]

**Phototoxic effect**

1-Phenoxy-2-propanol [770-35-4]
2-Phenyl-1-ethanol [60-12-8]
Piperazine [110-85-0]

Use in metal-working fluids is not permitted: see TRGS 611. Reaction with nitrosating agents can result in the formation of carcinogenic N,N'-dinitrosopiperazine, see Section III “Amines which form carcinogenic nitrosamines on nitrosation”.

**Polybutenes and Polyisobutenes**
Polydimethyl siloxanes, linear [63148-62-9; 9006-65-9; 9016-00-6]
Polyethylene glycol (average molecular weight > 600) [25322-68-3]
Polyethylene-polypropylene glycol [9003-11-6]
Polyoxyethylene oleyl ether [9004-98-2]
Polypropylene glycol (PPG) [25322-69-4]
Poly(propylene glycol) n-butyl ether [9003-13-8]
Propylene glycol [57-55-6]

**Pyrrolidine** [123-75-1]

Use in metal-working fluids is not permitted: see TRGS 611. Reaction with nitrosating agents can result in the formation of carcinogenic N-nitrosopyrrolidine, see Section III “Amines which form carcinogenic nitrosamines on nitrosation”.

Sebacic acid [111-20-6]
Stearic acid [57-11-4]
Tall oil, distilled [8002-26-4]
1-Tetradecanol [112-72-1]

**Tetrahydrobenzotriazole** [6789-99-7]
Triazinetriyltriminotrihexanoic acid [80584-91-4]
Triethylene glycol n-butyl ether [143-22-6]
Tris(2,4-ditert-butylphenyl) phosphite [31570-04-4]
N,N',N'-Tris(β-hydroxyethyl)hexahydro-1,3,5-triazine [4719-04-4]
releases formaldehyde

Tris[(2- or 4-)C9-C10-isoalkylphenyl] phosphorothioate [126019-82-7]
Tris(nonylphenyl) phosphite [26523-78-4]
Zinc, O,O'-di-2-ethylhexyl dithiophosphate [4259-15-8]
Advances in our understanding of the modes of action and potency of carcinogens have made possible the improved differentiation of carcinogenic substances. Therefore, in 1998 an extended classification scheme was introduced.\(^2\) The sections of the List of MAK and BAT Values previously called IIIA1, IIIA2 and III B were renamed as Categories 1, 2 and 3 of Section III and two new categories, 4 and 5, were added.

Substances which have been shown to be carcinogenic in man or in experimental animals are classified in the Categories 1 or 2 and are not assigned MAK or BAT values. Suspected carcinogens are classified in Category 3 and are assigned a MAK or BAT value only if neither the substance nor any of its metabolites is genotoxic or the genotoxic effect is not the main effect.

In the Categories 4 and 5 are classified substances with carcinogenic properties for which the available data are sufficient for assessment of the carcinogenic potency. For these substances an occupational exposure level (MAK or BAT value) is defined at which no or at most a very slight contribution to the cancer risk of the exposed persons is to be expected. The substances classified in Category 4 are known to act typically by non-genotoxic mechanisms. Category 5 contains genotoxic carcinogens of weak potency. For the monitoring of exposure to these substances, the establishment of BAT values is of particular importance.

1. Substances that cause cancer in man and can be assumed to contribute to cancer risk. Epidemiological studies provide adequate evidence of a positive correlation between the exposure of humans and the occurrence of cancer. Limited epidemiological data can be substantiated by evidence that the substance causes cancer by a mode of action that is relevant to man.

Aflatoxins [1402-68-2]
4-Aminobiphenyl [92-67-1]
Arsenic [7440-38-2] and inorganic arsenic compounds
Asbestos [1332-21-4] (fibrous dust)
Actinolite, Amosite, Anthophyllite, Chrysotile, Crocidolite and Tremolite
Cigarette smokers bear an increased risk of bronchial cancer.
Beech wood dust
Dusts have been shown epidemiologically to be unequivocally carcinogenic. The active carcinogenic principle has not been identified to date.
Benzenes [71-43-2]
Benzidine [92-87-5] and its salts
Beryllium [7440-41-7] and its inorganic compounds
Bis(b-chloroethyl)sulfide (mustard gas) [505-60-2]
Bischloromethyl ether (dichlorodimethylether) [542-88-1]
not to be confused with the asymmetric (Dichloromethyl) methyl ether
1,3-Butadiene [106-99-0]
Cadmium [7440-43-9] and its inorganic compounds (inhalable fraction)

---

α-Chlorinated toluenes:
- Mixture of Benzoyl chloride [98-88-4],
- Benzyl chloride [100-44-7],
- Benzyl dichloride [98-87-3],
- Benzyl trichloride [98-07-7]
4-Chloro-o-toluidine [95-69-2]
Chromium(VI) compounds (inhalable fraction)
- 1,2-Dichloropropane [78-87-5]
- Erionite [12510-42-8] (fibrous dust)
- Hard metal containing tungsten carbide and cobalt (inhalable fraction)
- Methylarsenic compounds
- N-Methyl-bis(2-chloroethyl)amine (nitrogen mustard) [51-75-2]
- Monochlorodimethyl ether [107-30-2]
The classification in Category 1 applies to technical monochlorodimethyl ether which can be contaminated with up to 7% bischloromethyl ether.
- 2-Naphthylamine [91-59-8]
Nickel and nickel compounds (inhalable fraction)
Regarding compounds which have been found to be unequivocally carcinogenic in man, see Toxikologisch-arbeitsmedizinische Begründung von MAK-Werten, available from the publisher: Wiley-VCH, D-69451 Weinheim.
- Oak wood dust
Dusts have been shown epidemiologically to be unequivocally carcinogenic. The active carcinogenic principle has not been identified to date.
- N-Phenyl-2-naphthylamine [135-88-6]
- 1,3-Propane sultone [1120-71-4]
- Sidestream smoke (passive smoking at the workplace)
- Silica, crystalline (respirable fraction)
- o-Toluidine [95-53-4]
- Trichloroethylene [79-01-6]
- Vinyl chloride [75-01-4]

2. Substances that are considered to be carcinogenic for man because sufficient data from long-term animal studies or evidence from animal studies substantiated by evidence from epidemiological studies indicate that they can contribute to cancer risk. Limited data from animal studies can be supported by evidence that the substance causes cancer by a mode of action that is relevant to man and by results of in vitro tests and short-term animal studies.

- Acrylamide [79-06-1]
- Acrylonitrile [107-13-1]
- Allyl glycidyl ether [106-92-3]
- Aluminium oxide [1344-28-1] (fibrous dust)
- Aluminium silicate fibres (RCF)
  Cristobalite can develop from aluminium silicate fibres used in building materials under thermal load, see documentation.
- o-Aminoazotoluene [97-56-3]
- 6-Amino-2-ethoxynaphthalene [293733-21-8]
- o-Anisidine [90-04-0]
- Anthanthrene [191-26-4]
- Antimony [7440-36-0] and its inorganic compounds except for stibine
- Attapulgite [12174-11-7] (fibrous dust)
- Auramine [492-80-8]
Auramine hydrochloride [2465-27-2]
Benzo[a]anthracene [56-55-3]
Benzo[b]fluoranthene [205-99-2]
Benzo[j]fluoranthene [205-82-3]
Benzo[k]fluoranthene [207-08-9]
Benzo[b]naphto[2,1-d]thiophene [239-35-0]
Benzo[a]pyrene [50-32-8]
Benzy1 chloride [100-44-7] see also α-chlorinated toluenes
Benzy1 dichloride [98-87-3] see also α-chlorinated toluenes
Benzy1 trichloride [98-07-7] see also α-chlorinated toluenes
Bitumen (high-temperature processing, vapours and aerosols) [64742-93-4] (bitumen, oxidized)
Bromodichloromethane [75-27-4]
Bromoethane [74-96-4]
1-Bromopropane [106-94-5]
2,4-Butane sultone [1121-03-5]
Butanone oxide [96-29-7]
1,2-Butylene oxide [106-88-7]
Carbamic acid ethyl ester [51-79-6]
Chlordecone [143-50-0]
Chlorinated camphene [8001-35-2]
p-Chloroaniline [106-47-8]
p-Chlorobenzotrichloride [5216-25-1]
1-Chloro-2,3-epoxypropane (Epichlorohydrin) [106-89-8]
Chlorofluoromethane (FC-31) [593-70-4]
N-Chloroformylmorpholine [15159-40-7]
Chloroprene [126-99-8]
Chrysene [218-01-9]
Cobalt [7440-48-4] and cobalt compounds (inhalable fraction)
Cyclopenta[cd]pyrene [27208-37-3]
Dawsonite [12011-76-6] (fibrous dust)
2,4-Diaminoanisole [615-05-4]
4,4ʹ-Dichlorodiphenylmethane [101-77-9]
1,5-Diaminonaphthalene [2243-62-1]
Diazomethane [334-88-3]
Dibenz[a,h]anthracene [53-70-3]
Dibenz[a,e]pyrene [192-65-4]
Dibenz[a,h]pyrene [189-64-0]
Dibenz[a,i]pyrene [189-55-9]
Dibenz[a,l]pyrene [191-30-0]
1,2-Dibromo-3-chloropropene [96-12-8]
1,2-Dibromoethane [106-93-4]
Dichloroacetylene [7572-29-4]
3,3ʹ-Dichlorobenzidine [91-94-1]
1,4-Dichloro-2-butene [764-41-0]
1,2-Dichloroethane [107-06-2]
1,3-Dichloro-2-propanol [96-23-1]
1,3-Dichloropropene (cis and trans) [542-75-6]
Diesel engine emissions
Because of the new diesel engine technology the emissions have changed significantly in quality and quantity. Since it must be assumed that these new diesel engines were introduced at the end of the 1990s, all the available epidemiological studies which were evaluated in 2007 are based on exposures to emissions from older diesel engines. The emissions from the new diesel engines can not be evaluated until appropriate studies become available.

Diethyl sulfate [64-67-5]
Diglycidyl resorcinol ether [101-90-6]
3,3’-Dimethoxybenzidine [119-90-4]
3,3’-Dimethylbenzidine [119-93-7]
Dimethylcarbamoyl chloride [79-44-7]
1,1-Dimethylhydrazine [57-14-7]
1,2-Dimethylhydrazine [540-73-8]
Dimethylsulfamoyl chloride [13360-57-1]
Dimethyl sulfate [77-78-1]
Dinitrotoluene (mixtures of isomers) [25321-14-6]
Ethylene oxide [75-21-8]
Ethylenimine [151-56-4]
Glass fibres (fibrous dust)
Glycidol (Glycid) [556-52-5]
Glycidyl trimethylammonium chloride [3033-77-0]
Hexamethylphosphoric acid triamide [680-31-9]
Hydrazine [302-01-2]
Hydrazobenzene [122-66-7]
Hydroquinone [123-31-9]
Indeno[1,2,3-cd]pyrene [193-39-5]
Indium phosphide [22398-80-7]
Lead [7439-92-1] and its inorganic compounds (inhalable fraction) except lead arsenate and lead chromate
5-Methyl-o-anisidine [120-71-8]
4,4’-Methylene-bis(2-chloroaniline) (MOCA) [101-14-4]
4,4’-Methylene-bis(N,N-dimethylaniline) [101-61-1]
4,4’-Methylene-bis(2-methylaniline) [838-88-0]
Methyl iodide [74-88-4]
1-Methylpyrene [2381-21-7]
Michler’s ketone [90-94-8]
Monomethylhydrazine [60-34-4]
Naphthalene [91-20-3]
5-Nitrocyclooctatetraene [602-87-9]
2-Nitroanisole [91-23-6]
4-Nitrobiphenyl [92-93-3]
2-Nitronaphthalene [581-89-5]
2-Nitropropane [79-46-9]
N-Nitrosodi-n-butylamine [924-16-3]
N-Nitrosodiethanolamine [1116-54-7]
N-Nitrosodiethylamine [55-18-5]
N-Nitrosodipropylamine [601-77-4]
N-Nitrosodimethylamine [62-75-9]
N-Nitrosodi-n-propylamine [621-64-7]
N-Nitrosoethylphenylamine [612-64-6]
N-Nitrosomethylamine [10595-95-6]
N-Nitrosomethylphenylamine [614-00-6]
N-Nitrosomorpholine [59-89-2]
N-Nitrosopiperidine [100-75-4]
N-Nitrosopyrrolidine [930-55-2]
2-Nitrotoluene [88-72-2]
5-Nitro-o-toluidine [99-55-8]
Ochratoxin A [303-47-9]
4,4’-Oxydianiline [101-80-4]
Pentachlorophenol [87-86-5]
Phenyl glycidyl ether (PGE) [122-60-1]
Potassium titanates (fibrous dust) several CAS Nos and formulas
β-Propiolactone [57-57-8]
Propylene imine [75-55-8]
Rock wool (fibrous dust)
Silicon carbide [409-21-2] (fibrous dust)
Tetrafluoroethene [116-14-3]
Tetranitromethane [509-14-8]
4,4’-Thiodianiline [139-65-1]
Toluene-2,4-diamine [95-80-7]
2,3,4-Trichloro-1-butene [2431-50-7]
1,2,3-Trichloropropane [96-18-4]
2,4,5-Trimethylaniline [137-17-7]
2,4,6-Trinitrotoluene [118-96-7]
Uranium [7440-61-1] and its hardly soluble inorganic compounds
Vanadium [7440-62-2] and its inorganic compounds (inhalable fraction)
4-Vinylcyclohexene [100-40-3]
4-Vinyl-1-cyclohexene dioxide [106-87-6]
2,4-Xylidine [95-68-1]
2,6-Xylidine [87-62-7]

For substances in Categories 1 and 2, exposure to which is considered to involve a distinct cancer risk for man, no MAK value is listed in Section IIa since a safe concentration range cannot be given. For some of these substances, even uptake through the intact skin is very dangerous. Substances in Categories 1 or 2, for which, as a result of the mechanism of action, a dose or concentration without carcinogenic effects, a “No Adverse Effect Level” (NAEL), can be expected, but the database is not sufficient to be able to derive a MAK value and reclassify them in Categories 4 or 5, are designated in Sections II and III of the List of MAK and BAT Values with the footnote “Prerequisite for Category 4 (or 5) in principle fulfilled, but insufficient data available for the establishment of a MAK or BAT value”.

Where it is necessary to employ such substances for industrial purposes, special measures are required for protection and monitoring. These include: 1. routine analysis of the workplace air with analytical methods which are appropriate and sufficiently sensitive for the purpose; 2. special medical supervision of exposed individuals whereby, e.g., regular tests must be performed to determine whether the substance or its metabolites are detectable in the human body or whether appropriate effect parameters have been altered.
Continual technical improvements should make it possible to prevent these substances from occurring in the workplace air or from directly affecting the individual at work. Where this goal cannot presently be attained, additional protective measures are required (e.g., individual respirators and protective clothing, shorter periods in the area of danger, etc.) so that exposure is minimal. The kind of protective measures which are necessary also depends on the particular physical characteristics of the substance and on the nature and intensity of its carcinogenic effect.

3. Substances that cause concern that they could be carcinogenic for man but cannot be assessed conclusively because of lack of data. The classification in Category 3 is provisional. Substances for which the available studies have yielded evidence of carcinogenic effects that is not sufficient for classification of the substance in one of the other categories. Further studies are required before a final decision can be made. A MAK or BAT value can be established provided no genotoxic effects have been detected for the substance or its metabolites or the genotoxic effect is not the main effect.

- Acetamide [60-35-5]
- Acrolein [107-02-8]
- Allyl alcohol [107-18-6]
- Allyl chloride [107-05-1]
- 4-Aminodiphenylamine [101-54-2]
- 3-Amino-9-ethylcarbazole [132-32-1]
- p-Anisidine [104-94-9]
- p-Aramid [26125-61-1] (fibrous dust)
- 1H-Benzotriazole [95-14-7]
- Benzoyl chloride [98-88-4] see also α-Chlorinated toluenes
- Biphenyl [92-52-4]
- Bromochloromethane [74-97-5]
- 1,4-Butane sultone [1633-83-6]
- n-Butyl glycidyl ether (BGE) [2426-08-6]
- tert-Butyl glycidyl ether [7665-72-7]
- tert-Butyl-4-hydroxyanisole (BHA) [25013-16-5]
- tert-Butyl methyl ether [1634-04-4]
- Calcium sodium metaphosphate [23209-59-8] (fibrous dust)
- Carbon black (inhalable fraction)
- Chlordane [57-74-9]
- Chlorinated paraffins unbranched chains, several CAS Nos, e.g. [63449-39-8]
  Chlorinated paraffins form a group of compounds with different degrees and positions of chlorine substitution. Chlorinated paraffins with low chlorine content and short chain length can occur as a particle-vapour mixture, whereas chlorinated paraffins with a large quantity of chloride or with long alkyl chains occur only as particles.
- Chloroacetaldehyde [107-20-0]
- Chloroacetamide-N-methylol (CAM) [2832-19-1]

★ Releases formaldehyde
- 2-Chloroacrylonitrile [920-37-6]
- Chloroethane [75-00-3]
- Chloroformic acid ethyl ester [541-41-3]
3-Chloro-2-methylpropene [563-47-3]
o-Chloronitrobenzene [88-73-3]
p-Chloronitrobenzene [100-00-5]
4-Chlorophenyl isocyanate [104-12-1]
3-Chloro-1,2-propanediol (α-Chlorohydrin) [96-24-2]
5-Chloro-o-toluidine [95-79-4]
Coal mine dust (respirable fraction)
Cresyl glycidyl ether mixture of isomers [26447-14-3] o-isomer [2210-79-9]
Crotonaldehyde [123-73-9; 4170-30-3]
Cyclohexanone [108-94-1]
Diacetyle [431-03-8]
3,3’-Diaminobenzidine and its tetrahydrochloride [91-95-2; 7411-49-6]
Di-n-butylphosphate [107-66-4] and its technical mixtures
Di-n-butyl phthalate [84-74-2]
1,1-Dichloroethane [75-34-3]
1,2-Dichloromethoxyethane [41683-62-9]
3,4-Dichloronitrobenzene [99-54-7]
4-(2,4-Dichlorophenoxy)benzenamine [14861-17-7]
2,2-Dichloro-1,1,1-trifluoroethane (FC-123) [306-83-2]
Diethanolamine [111-42-2]

Reaction with nitrosating agents can result in the formation of carcinogenic N-nitrosodiethanolamine, see Section III

Amines which form carcinogenic nitrosamines on nitrosation:

Diethyldiocarbamoyl chloride [88-10-8]
1,1-Difluoroethylene [75-38-7]
Diethylene glycol (DGE) [2238-07-5]
Diisodicyclic phthalate [26761-40-0]
Diisotridecyl phthalate [27253-26-5]
2,5-Dimethoxy-4-chloroaniline [6358-64-1]
N,N-Dimethylaniline [121-69-7]
Dimethyl hydrogen phosphite [868-85-9]
Dinitrobenzene (all isomers) [25154-54-5]
Dinitronaphthalene (all isomers) [27478-34-8]
Diphenylamine [122-39-4]
Di(2-propyloxyethyl) phthalate [53306-54-0]
Distillates (petroleum) [64742-47-8] hydrotreated light (aerosol)
Distillates (petroleum) [64742-47-8] hydrotreated light (vapour)
Ditridecyl phthalate [119-06-2]
3,4-Epoxyhexane carboxylic acid (3,4-epoxycyclohexylmethyl) ester [2386-87-0]
Ethidium bromide [1239-45-8]
Ethylene [74-85-1]
Ethylene thiourea [96-45-7]
Furfural [98-01-1]
Furfuryl alcohol [98-00-0]
Glyoxal [107-22-2]
Halloysite [12298-43-0] (fibrous dust)
Hexachloroethane [67-72-1]
Hexahydrophthalic acid diglycidylester [5493-45-8]
Hydrogen selenide [7783-07-5]
Iron oxides (inhalable fraction) [1345-25-1; 1309-37-1; 1309-38-2; 1317-61-9] with the exception of iron oxides which are not biologically available

Isophorone [78-59-1]

Isopropyl glycidyl ether (IGE) [4016-14-2]

Isopropyl oil residue of isopropyl alcohol production

Kaolinite [1332-58-7]

quartz content must be considered separately

Kerosine (petroleum) (aerosol) [8008-20-6]

applies to skin contact

Kerosine (petroleum) (vapour) [8008-20-6]

applies to skin contact

Magnesium oxide sulfate [12286-12-3] (fibrous dust)

2-Mercaptobenzothiazole [149-30-4]

Mercury [7439-97-6] and its inorganic compounds (as Hg)

Mercury, organic compounds

Metal-working fluids which contain nitrite or nitrite-forming compounds and substances which react with nitrite to yield nitrosamines

N-Methylaniline [100-61-8]

Reaction with nitrosating agents can result in the formation of carcinogenic N-nitrosomethylaniline, see Section III “Amines which form carcinogenic nitrosamines on nitrosation”.

Methyl bromide [74-83-9]

N-Methyl-N,2,4,6-tetranitroaniline [479-45-8]

Molybdenum trioxide [1313-27-5]

Naphthenic acids and sodium, calcium, potassium napthenates [1338-24-5; 61790-13-4; 61789-36-4; 66072-08-0] (technical mixtures)

1,5-Naphthylene diisocyanate [3173-72-6]

1-Naphthylthiourea [86-88-4]

Nemalite [1317-43-7] (fibrous dust)

2-Nitro-4-aminophenol [119-34-6]

4-Nitroaniline [100-01-6]

4-Nitrobenzoic acid [62-23-7]

Nitrogen dioxide [10102-44-0]

Nitroglycerin [55-63-7]

Nitromethane [75-52-5]

1-Nitronaphthalene [86-57-7]

2-Nitro-p-phenylenediamine [5307-14-2]

Nitropyrenes (Mono-, Di-, Tri-, Tetra-) (isomers)

N-Nitrosodiphenylamine [86-30-6]

3-Nitrotoluene [99-08-1]

4-Nitrotoluene [99-99-0]

Olaquindox (N-(2-Hydroxyethyl)-3-methyl-2-quinoxalinecarboxamide 1,4-dioxide) [23696-28-8]

Ozone [10028-15-6]

Pentachloroethane [76-01-7]

Perfluorooctanesulfonic acid (PFOS) [1763-23-1] and its salts Phenol [108-95-2]

Phenyl arsenic compounds [637-03-6]

o-Phenylenediamine [95-54-5]

m-Phenylenediamine [108-45-2]
p-Phenylenediamine [106-50-3]
Phenylhydrazine [100-63-0]
Picric acid [88-89-1]
Portland cement dust [65997-15-1]
quartz and chromate fractions must be evaluated as such
isos-Propyl benzene (cumene) [98-82-8]
Pyridine [110-86-1]
Quinone [106-51-4]
Rhodium [7440-16-6] and its inorganic compounds
Selenium [7782-49-2] and its inorganic compounds (as Se)
Sepiolite (fibrous dust) several CAS Nos and formulas
Slag wool (fibrous dust)
Talc [14807-96-6] (without asbestos fibres) (respirable fraction)
Tetrachloroethylene [127-18-4]
Thiourea [62-56-6]
p-Toluidine [106-49-0]
Tribromomethane [75-25-2]
1,2,4-Trichlorobenzene [120-82-1]
1,1,2-Trichloroethane [79-00-5]
Tricresyl phosphate, sum of all o-isomers [78-30-8]
1,3,5-Triethylhexahydro-1,3,5-triazine [7779-27-3]
releases formaldehyde
Trimethyl phosphate [512-56-1]
2,4,7-Trinitrofluorenone [129-79-3]
Uranium compounds, soluble inorganic
Vinylidene chloride [75-35-4]
Wood dust (except beech and oak wood dust)
Xylidine (isomers)

The monitoring of the health of employees using substances classified in Category 3 must be intensified. In addition, the branches of industry which produce and process such substances are requested – as are all relevantly involved research laboratories – to participate in the effort to shed light on the cancer-correlation question and, where necessary, to search for harmless alternative substances.

Category 3 will be re-evaluated annually to determine whether substances must be reassigned to Categories 1 or 2, whether the database permits their transfer to one of the Categories 4 or 5 or whether they require no classification and can be dismissed completely from Section III of this list.
4. Substances that cause cancer in humans or animals or that are considered to be carcinogenic for humans and for which a MAK value can be derived. A non-genotoxic mode of action is of prime importance and genotoxic effects play no or at most a minor part provided the MAK and BAT values are observed. Under these conditions no contribution to human cancer risk is expected. The classification is supported especially by evidence that, for example, increases in cellular proliferation, inhibition of apoptosis or disturbances in cellular differentiation are important in the mode of action. The classification and the MAK and BAT values take into consideration the manifold mechanisms contributing to carcinogenesis and their characteristic dose-time-response relationships.

Acrylic acid polymer (neutralized, cross-linked)
α-Aluminium oxide [1302-74-5] (corundum)
except for aluminium oxide fibres and ultrafine particles; see section Vh
Amitrole [61-82-5]
Aniline [62-53-3]
Barium sulfate [7727-43-7] (respirable fraction)
except for ultrafine particles; see section Vh
n-Butyltin compounds (as Sn [7440-31-5])
Carbon tetrachloride [56-23-5]
Chlorinated biphenyls [53469-21-9]
Chlorinated biphenyls form a group of compounds with different degrees and positions of chlorine substitution; often, more than one of these substances occur simultaneously at the workplace. Chlorinated biphenyls with low chlorine content (up to 5 chlorine atoms) can occur as a particle-vapour mixture, whereas chlorinated biphenyls with a large quantity of chlorine occur only as particles.
Chloroform [67-66-3]
2,6-Di-tert-butyl-p-cresol (3,5-Di-tert-butyl-4-hydroxytoluene) (BHT) [128-37-0]
Dichloroacetic acid [79-43-6] and its salts
1,4-Dichlorobenzene [106-46-7]
Di(2-ethylhexyl)phthalate (DEHP) [117-81-7]
N,N-Dimethylformamide [68-12-2]
1,4-Dioxane [123-91-1]
Dust, general threshold limit value (respirable fraction) (biopersistent granular dusts)
except for ultrafine particles; see section Vh
1,2-Epoxypropane [75-56-9]
Ethylbenzene [100-41-4]
Formaldehyde [50-00-0]
Furan [110-00-9]
Glutaraldehyde [111-30-8]
Graphite [7782-42-5] (respirable fraction)
except for ultrafine particles; see section Vh
Heptachlor [76-44-8]
Hexachlorobenzene [118-74-1]
Hexachloro-1,3-butadiene [87-68-3]
α-Hexachlorocyclohexane [319-84-6]
β-Hexachlorocyclohexane [319-85-7]
1,2,3,4,5,6-Hexachlorocyclohexane techn. mixture of α-HCH [319-84-6] and β-HCH [319-85-7]
Hydrogen peroxide [7722-84-1]
Lindane [58-89-9]
Magnesium oxide [1309-48-4] (respirable fraction) except for ultrafine particles; see section Vh
4,4’-Methylene diphenyl diisocyanate (MDI) [101-68-8] (inhalable fraction) see also “polymeric MDI”
Nitrilotriacetic acid [139-13-9] and its sodium salts
Avoid simultaneous exposure to iron compounds (formation of FeNTA)
Nitrobenzene [98-95-3]
n-Octyltin compounds (as Sn [7440-31-5])
★ Peracetic acid [79-21-0]
Perfluorooctanoic acid (PFOA) [335-67-1] and its inorganic salts
o-Phenylphenol [90-43-7] see also Sodium o-phenylphenol
Phenyltin compounds (as Sn [7440-31-5])
★ Pigment yellow 12, 13, 83 [6358-85-6; 5102-83-0; 5567-15-7]
“polymeric MDI” [9016-87-9] (inhalable fraction) see also 4,4’-Methylene diphenyl diisocyanate (MDI)
“polymeric MDI” (pMDI) is a technical grade MDI, containing 30% – 80% w/w 4,4’-methylene diphenyl isocyanate (MDI); the remainder consists of MDI oligomers and MDI homologues.
Polytetrafluoroethene [9002-84-0] (respirable fraction) except for ultrafine particles; see section Vh
Polyvinyl chloride [9002-86-2]
except for ultrafine particles; see section Vh
Sodium o-phenylphenol [132-27-4]
Sulfuric acid [7664-93-9]
Tantalum [7440-25-7] (respirable fraction) except for ultrafine particles; see section Vh
2,3,7,8-Tetrachlorodibenzo-p-dioxin [1746-01-6]
1,1,2,2-Tetrachloroethane [79-34-5]
Tetrahydrofuran [109-99-9]
Titanium dioxide [13463-67-7] (respirable fraction) except for ultrafine particles; see section Vh
Tributyl phosphate [126-73-8]
Vinyl acetate [108-05-4]
N-Vinyl-2-pyrrolidone [88-12-0]
Zirconium dioxide [1314-23-4; 12036-23-6] (respirable fraction) except for ultrafine particles; see section Vh

5. Substances that cause cancer in humans or animals or that are considered to be carcinogenic for humans and for which a MAK value can be derived. A genotoxic mode of action is of prime importance but is considered to contribute only very slightly to human cancer risk, provided the MAK and BAT values are observed.
The classification and the MAK and BAT values are supported by information on the mode of action, dose-dependence and toxicokinetic data.

Acetaldehyde [75-07-0]
Dichloromethane [75-09-2]
Ethanol [64-17-5]
Isoprene (2-Methyl-1,3-butadiene) [78-79-5]
Styrene [100-42-5]

For these substances, exposure at the level of the MAK value makes only a small contribution to the cancer risk. The derivation of the MAK value is described in more detail in the documentation for each substance.
The monitoring of the health of employees using substances classified in Categories 4 and 5 must be intensified since after exposures at levels exceeding the MAK or BAT value an increase in the cancer risk is conceivable.

Groups of substances requiring special consideration

Carcinogenic medicines

Results from animal studies or experience of effects in man suggest that a number of medicines have carcinogenic effects. Exposure of employees to such substances can occur during the manufacturing process, therapeutic use and in research laboratories.

Substances with a genotoxic therapeutic mechanism are assumed to be carcinogenic. This assumption is supported by the development of novel tumours in patients undergoing treatment with alkylating cytostatics such as cyclophosphamide, ethylenimine or chlor-naphazine as well as with ointments containing arsenic or tar after use for long periods.

Consequently, it must be assumed that a hazard exists when these substances are handled occupationally. Suitable precautions must guarantee that exposure to such substances is prevented.

Amines which form carcinogenic nitrosamines on nitrosation

Nitrosatable amines require particular attention because in the presence of nitrosating agents they may be transformed into potentially strongly carcinogenic nitroso compounds. A detailed account of “Nitrosation of volatile amines at the workplace” may be found online under https://doi.org/10.1002/3527600418.mb0b03e0001.

The formation of nitrosamines from such amines has not only been observed in model experiments but – at least for some of the compounds – has also been demonstrated at the workplace. The amine-containing substances and end products handled at work can themselves be contaminated to a considerable extent with the corresponding nitrosamines. Under conditions encountered in practice nitrosation is to be expected particularly with secondary amines, although in principle, primary and tertiary amines may also undergo nitrosation reactions. Nitrogen oxides are the most probable nitrosating agents. In addition, nitrosation of amines may be brought about by nitrosyl chloride, nitrite esters, metal nitrites and nitroso compounds.

The potential danger associated with any particular amine arises on the one hand from the readiness with which it undergoes nitrosation reactions, and on the other from the degree of carcinogenicity of the corresponding nitrosamine. For both parameters considerable differences are to be found between the various amines. In model studies several factors such as pH, temperature, catalysts and inhibitors are known to determine the extent of nitrosation. Nitrosation of amines can take place not only in acid milieu but also in alkaline. Because nitrogen oxides are effective nitrosating agents also in alkaline milieu, when nitrosatable amines are present nitrogen oxides should be excluded. The reaction of nitrite with nitrosatable amines is accelerated by the presence of formaldehyde, which also causes extension towards the alkaline of the pH range in which significant levels of nitrosation are possible (see documentation of MAK values“Kühlschmierstoffe” (Metal-

23) see “Carcinogenic Medicines” (1990) https://doi.org/10.1002/3527600418.mb0200e0001
working fluids). At present, however, it is not possible to make quantitative predictions as to the formation of nitrosamines under the complex conditions found at the workplace and in mixtures of substances found there. Two precautionary measures are therefore necessary when handling amines at the workplace:

1. Simultaneous exposure to nitrosating agents should be reduced to a minimum. This can be put into practice by eliminating nitrosating agents, or – if they play a role in the actual process – by replacing them with substances which do not lead to the formation of carcinogenic nitrosamines. In particular, the level of nitrogen oxides at the workplace should be monitored and reduced when necessary.

2. The level of nitrosamines in the workplace air and in substances containing amines should be monitored. This applies particularly when amines are used from which highly carcinogenic nitroso compounds, e.g., nitrosodimethylamine or nitrosodiethylamine, can be formed.

Monocyclic aromatic amino and nitro compounds

The List of MAK and BAT Values includes 38 monocyclic aromatic amino and nitro compounds, most of which are classified in Categories 1 to 3 for carcinogenic substances, but there are also some with MAK values and others for which no MAK value could be established and which are therefore listed in Section II b of the List of MAK and BAT Values. Comparison of these compounds (see “Toxikologisch-arbeitsmedizinische Be- gründungen von MAK-Werten”) reveals that their acute and chronic toxic effects are very similar. When they are tested with appropriate methods, they may be shown to have carcinogenic potential (Categories 1 or 2) or at least to be suspected carcinogens (Category 3). And the substances all cause very similar kinds of tumours. The substances are generally only weakly genotoxic. Therefore, it is considered that the acute toxic effects play an important role, a role in tumour promotion. The creation of the Categories 4 and 5 for carcinogenic substances made it necessary to review the contribution of genotoxic and non-genotoxic properties to the carcinogenicity of (especially) suspected carcinogens (substances in Category 3) and to decide whether they could be reclassified in one of the new categories. In addition, inconsistencies in the classification of these substances had become apparent. Because there is frequently insufficient information available for the classification of individual substances, it seems sensible to draw conclusions on the basis of analogy with structurally related compounds. The comparison reveals that this is possible within certain limits but that, in the absence of appropriate data, it is not possible to decide with any certainty where a substance belongs in the spectrum between weak and powerful carcinogens.

Practically all the monocyclic aromatic amino and nitro compounds reviewed here are methaemoglobin producers and most cause haemosiderosis. This suggests that the N-hydroxylamines formed from the compounds are responsible for the toxic effects in experimental animals and in man. It has, however, not yet been demonstrated whether the observed differences between sexes and species and in target organs may all be explained in terms of toxicokinetically induced differences in the bioavailability of the effective metabolites. It is also not clear whether the genotoxic or acute toxic effects are influenced by the release of iron during methaemoglobin formation or erythrocyte turnover and by the “oxidative stress” associated with these processes.

In any case, toxic tissue changes and fibrosis precede tumour development in the spleen, liver and kidneys.
Genotoxic effects have been demonstrated for many monocyclic aromatic amino and nitro compounds and are likely for others. Because of this (albeit weak) genotoxicity, a classification in Category 5 for carcinogenic substances could seem appropriate. However, there is considerable evidence that tissue damage is decisive for the tumour development and that the substances should be classified in Category 4. But such a classification requires that the causes and dose-dependence of the tissue damage are understood.

The comparison of these substances also indicates that the haematotoxic members of the group must generally be seen to be risk factors for cancer and should be re-examined to decide whether they should be classified in one of the categories for carcinogenic substances.

**Azo colourants**

Azo colourants are characterised by the azo group —N=N—. They are made by the coupling of singly and multiply diazotized aryl amines. Of particular toxicological importance are colourants from doubly diazotized benzidine and benzidine derivatives (3,3'-dimethylbenzidine, 3,3'-dimethoxybenzidine, 3,3'-dichlorobenzidine). In addition, aminooazobenzene, aminonaphthalene and monocyclic aromatic amines are encountered. Reductive fission of the azo group, either by intestinal bacteria or by azo reductases of the liver and of extrahepatic tissues, can cause these compounds to be released. Such breakdown products have been detected in animal experiments as well as in man (urine). Mutagenicity, which has been observed with numerous azo colourants in in vitro test systems, and the carcinogenicity in animal experiments are attributed to the release of amines and their subsequent metabolic activation. There are now epidemiological indications that occupational exposure to benzidine-based azo colourants can increase the incidence of bladder carcinoma.

Thus all azo colourants whose metabolism can liberate a carcinogenic aryl amine are suspected of having carcinogenic potential. Due to the large number of such dyes (several hundred) it seems neither possible nor justifiable to substantiate this suspicion in each individual case by means of animal experimentation according to customary classification criteria. Instead, scientific models have to be relied on. Therefore, as a preventive measure to avoid putting exposed persons at risk, it is recommended that the substances be dealt with as if they were classified in the same categories as the corresponding carcinogenic or suspected carcinogenic amines (Categories 1, 2, 3). If there are indications that the colourant itself (e.g. a pigment) or any carcinogenic breakdown product is not biologically available, the absence of risk should be proved experimentally or substantiated by biomonitoring. Suitable animal experiments can also rule out a suspected carcinogenic potential.

**Pyrolysis products of organic materials**

If organic material is heated or combusted with a limited supply of oxygen, mixtures are produced whose compositions are dependent on the starting material and the reaction conditions. These mixtures contain, among numerous other substances, polycyclic aromatic hydrocarbons (PAH).

The extremely complex mixtures which have been examined to date contain, simultaneously and in widely differing proportions, carcinogenic components and substances which promote cancer development, as well as fractions which inhibit the carcinogenic effects of concurrently present components.
Many of the PAH which occur regularly in pyrolysis products are carcinogenic in animal studies. They are present at particularly high levels in

- brown coal tars (soft coal tars),
- coal tars (black coal tars),
- coal tar pitches,
- coal tar oils,
- coke oven emissions.

The carcinogenic effect after occupational exposures to these mixtures of aromatic compounds has been demonstrated in epidemiological studies. Therefore, they are classified in Category 1.

Particularly the local carcinogenic effects of these mixtures are accounted for largely in terms of their content of PAH. Such effects are therefore also to be expected with other PAH-containing mixtures. The levels and significance of other carcinogenic components of these mixtures has not yet been studied in detail. Thus, although diesel engine emissions also contain PAH, in this case it is probably the soot particles which determine the carcinogenic effect. This has been demonstrated only in animal studies and therefore diesel engine emissions are classified in Category 2.

The carcinogenic effects of other mixtures such as, e.g., petrol engine emissions, used motor oils, curing smoke, used cutting oils have not yet been studied in as much detail. The composition of these mixtures also makes them difficult to define. If, however, exposure to PAH which have been shown in animal studies to be carcinogenic, e.g.,

- anthanthrene,
- benzo[a]anthracene,
- benzo[b]fluoranthene,
- benzo[j]fluoranthene,
- benzo[k]fluoranthene,
- benzo[b]naptho[2,1-d]thiophene,
- benzo[a]pyrene,
- chrysene,
- cyclopenta(cd)pyrene,
- dibenzo[a,h]anthracene,
- dibenzo[a,e]pyrene,
- dibenzo[a,h]pyrene,
- dibenzo[a,i]pyrene,
- dibenzo[a,l]pyrene,
- indeno[1,2,3-cd]pyrene,

25) Because of the new diesel engine technology the emissions have changed significantly in quality and quantity. Since it must be assumed that these new diesel engines were introduced at the end of the 1990s, all the available epidemiological studies which were evaluated in 2007 are based on exposures to emissions from older diesel engines. The emissions from the new diesel engines can not be evaluated until appropriate studies become available.
1-methylpyrene, naphthalene,

can be demonstrated during work with such pyrolysis products, the mixtures should be handled like the substances in Category 2, except for phenanthrene and pyrene, which are not classified in a Carcinogen category on the basis of the data (see documentation “Polycyclic aromatic hydrocarbons (PAH) 2012”; https://doi.org/10.1002/3527600418.mb0223orge0027a).

It will be possible to establish a clearer, more quantitative relationship between exposure and an increase in cancer risk when more precise data for the compositions of specific mixtures and of their cancer-producing effects are available (see also documentation “Polycyclic aromatic hydrocarbons (PAH) 2012”). The Commission emphasizes the urgency of such investigations.

Polycyclic aromatic hydrocarbons (PAH) may be readily absorbed through the skin. Therefore, pyrolysis products and other mixtures containing PAH should be handled like substances designated with an “H” (see Section VII Percutaneous absorption; see also documentation “Polycyclic aromatic hydrocarbons (PAH) 2012”).

**Fibrous dusts**

Not only certain kinds of asbestos but also the fibrous zeolite, erionite, is considered to produce tumours in man. In addition, a number of fibrous dusts have been shown to produce tumours in experimental animals after inhalation or after intratracheal instillation or direct local administration into the chest (intrapleural) or abdominal (intraperitoneal) cavity.

When all the information as to the effects of dust on man and the effects seen in studies with animals and cultured cells is taken into account, it must be concluded that, unlike the non-fibrous insoluble dusts of corresponding composition,

– the fibrous asbestos dust particles which are durable in the organism must be seen as the cause of the tumorigenic effects of asbestos

– and that, in principle, all kinds of elongated dust particles have the potential, like asbestos fibres, to cause tumours if they are sufficiently long, thin and durable in vivo.

Factors also suggested to play a role include other properties of fibres such as their surface characteristics.

The animal studies have also demonstrated that longer or more durable fibres have higher carcinogenic potency than shorter or less durable fibres.

**Classification criteria**

**a. Properties of carcinogenic fibres**

According to the internationally accepted convention established in the 1960s for measuring levels of asbestos dust at workplaces by counting the fibres under the light microscope, only particles with a ratio of length to diameter greater than 3:1 and which are longer than 5 μm and have a diameter less than 3 μm are counted. The term fibrous dust is used here for fibres of these dimensions. With such fibrous dusts in animal studies, the number of fibres has been shown to correlate positively with the tumour incidence.

The above definition, however, does not distinguish clearly between carcinogenic and non-carcinogenic fibres. The presently available data do not make it possible to state...
precisely from which fibre length or diameter or from which length to diameter ratio and
from which durability fibres possess the biological activity resulting in tumour induction.
Nevertheless, at present there is no other definition which has a better scientific basis.

The situation is made more difficult by the fact that, with the exception of a few
inorganic and organic textile fibres, fibrous materials produce dusts in which the fibre
lengths and diameters are spread over a wide range.

In addition, the diameter of fibres, e.g., asbestos fibres, can be reduced after in-
corporation by longitudinal splitting. Then fibres with diameters less than 3 μm can be
found in the lungs although, before splitting, the fibres in the inhaled air did not fit the
definition of fibrous dust.

b. Effects in man
Epidemiological studies of the inhabitants of three villages in central Anatolia together
with mineralogical studies and analyses of the fibres in lung dust produced convincing
evidence that erionite fibres cause mesothelioma and lung cancer.

In epidemiological studies carried out in factories producing glass fibre and glass wool,
no convincing evidence of an increased risk of developing mesothelioma or lung cancer
was found. An increased risk of developing lung cancer was found for persons exposed to
rock and slag wool but could not be associated unequivocally with the exposure to these
fibrous dusts.

The studies available to date neither confirm nor refute the proposal that man-made
mineral fibres have carcinogenic effects but this was not to be expected since, even if the
individual fibres were as carcinogenic as asbestos fibres, the tumorigenicity would not be
detectable at the low exposure concentrations measured in these studies. At present there
are no appropriate studies of workplaces where persons processing or using fibres are
exposed to the much higher fibre concentrations necessary to examine with sufficient
sensitivity the question of the carcinogenic effects in man.

c. Animal inhalation studies
The results of inhalation studies with fibrous dusts are not always consistent so that pos-
tive results obtained in some studies could not be confirmed in others. The main reason for
this inconsistency is that it is difficult to ensure that a sufficient dose of the carcinogenic
fibre fraction reaches the target tissue. The fibres which are relevant for the effects in man,
for example, penetrate the nasal filter of rodents either only poorly or not at all. For
crocidolite, which has been shown to be carcinogenic in man, positive results have been
obtained in only one adequately documented inhalation study with rats but negative results
in several adequately documented studies.

Thus a negative result in an inhalation study does not exclude the possibility that the
substance has carcinogenic effects. Positive results in the lung must be analysed to de-
termine whether overloading has occurred.

d. Animal studies with intratracheal instillation, intrapleural or intraperitoneal in-
jection
Many kinds of fibre have proved to be carcinogenic after administration by intratracheal
instillation or by intrapleural or intraperitoneal injection. These administration routes are
unphysiological but they guarantee a high dose of fibres immediately after application at
the sites which are relevant for man (bronchial tract, pleura and peritoneum). Thus, in the
studies with intratracheal, intraperitoneal or intrapleural administration, a longer time and higher dose is available for tumour production than in inhalation studies where the fibre concentration in the target organs builds up only slowly.

With these methods, dose-response relationships can be established; they have demonstrated that the carcinogenic effect is determined by the form of the fibre. Inhalation studies with selected ceramic fibres have confirmed positive results obtained in injection studies. Although the possibility of overloading the target tissue cannot be excluded with these administration routes, a positive result from such a study is considered to be good evidence that the fibre would be carcinogenic in man.

e. Genotoxicity and cell transformation studies
Genotoxicity and cell transformation studies with various fibres also demonstrate that fibre form largely determines the effects of fibres. Whereas numerical and structural chromosome changes were detected in a number of test systems, there was no conclusive evidence that fibres can induce point mutations.

f. Durability
From the results of animal studies with durable and non-durable fibres it is concluded that durability in the biological system has a considerable effect on the carcinogenicity of fibres. At present, however, it is not possible to define the degree of durability necessary for carcinogenic activity or to state to what extent the durability determines the carcinogenic potency of the fibres. Gypsum and wollastonite, e.g., dissolve in the organism within a period of some days to a few weeks and show no signs of carcinogenic effects even after intraperitoneal administration.

g. Mechanism
The mechanism of the toxicity and carcinogenicity of fibres is very complex and many aspects are unclear.

The formation of tumours in the lungs and on serous skin is mainly the result of inflammatory processes. Chronic inflammation and cell proliferation are caused by the impairment of fibre clearance; whereby inflammation-promoting cytokines, growth factors, reactive oxygen (ROS) and nitrogen species (RNS), and chlorine radicals are released from macrophages, alveolar cells and mesothelial cells. The generation of these radicals leads to indirect genotoxic effects.

Additional mechanistic aspects are:

i) the formation of ROS and RNS caused by the fibres themselves,
ii) the absorption of the fibres into the target cells by means of endocytosis, whereby ROS and RNS are released intracellularly causing genetic and epigenetic changes, and
iii) the stimulation of cell receptors and inflammasomes, which in turn activate intracellular signal pathways and thus give the impulse for cell proliferation and the resistance to apoptosis.

Summary
The fibre dust groups will be evaluated individually, and depending on the data available and taking into consideration the mechanism of action will be classified in one of the categories for carcinogens.
The results of the evaluation of the individual fibre groups are given in List II a “Substances with MAK values and substances listed in Sections II b and III to XV”\textsuperscript{26}).

*Organic fibrous dusts*

Evaluation of the carcinogenicity of organic fibres in the critical dimension range is not possible. Studies are necessary, for example of carcinogenicity, surface characteristics, bioavailability and durability, to enable assessment of the carcinogenic effects of organic fibres.

IV Sensitizing substances

The allergies caused by substances at the workplace affect mostly the skin (contact eczema, contact urticaria), the respiratory passages (rhinitis, asthma, alveolitis) and the conjunctiva (blepharoconjunctivitis). The kind of allergy is determined by the route of uptake, the chemical properties of the substance and its aggregation state.

Contact allergies are generally manifested as contact eczema, the pathogenesis of which involves a T lymphocyte-mediated immune reaction of delayed type. Contact eczema is almost always caused by reactive substances of low molecular weight. Immunologically, these low molecular weight substances must be seen as haptens, prehaptens or prohaptens. They become complete allergens in the organism either by binding to peptides or proteins as such (haptens), after activation ex vivo (prehaptens) or after metabolism (prohaptens).

The development of a contact allergy of delayed type is determined by several factors, by the sensitization potential resulting from the chemical properties of the substance or the metabolites produced from it in the organism, by the exposure concentration and the duration and manner of exposure, by the genetic disposition of the person and, not least, by the state of the tissue with which the substance makes contact. The release of (pro-) inflammatory cytokines (e.g. TNF-α or interleukin-1β), which is triggered by existing inflammation of the skin or by irritation from a foreign substance, is necessary for the induction of sensitization. Thus, the irritating properties of a substance can increase its sensitization potential. Cytokine induction, which stimulates the immune response, can also be triggered by the additional contact with other irritating substances, e.g. detergents such as sodium dodecyl sulfate, which then provide the necessary (pro-)inflammatory stimulus. Furthermore, the irritating effect of these kinds of substances leads to increased penetration of the sensitizing substance. An effect which enhances (or decreases) penetration is also possible from non-irritating substances with suitable/adequate polarity (such as dimethyl sulfoxide). These types of cofactors and combinatorial effects, as well as particular factors relevant under conditions at the workplace and expressly pointed out in the documentation, are taken into account in the evaluation, as described in Chapter IV.c.

The sensitization potency of a substance is not necessarily reflected in the incidence of sensitizations which it causes because the clinical significance of a contact allergen is not only determined by its sensitization potency but also by the distribution of the substance and the possibilities of exposure to it. Quantitatively, the sensitization potential of a substance can best be estimated in animal studies, in particular in the Local Lymph Node Assay (LLNA) in the mouse. At present, in vitro studies are not yet sufficiently validated for this purpose.

Other allergic skin reactions, e.g., urticaria, involve immune reactions mediated by specific antibodies. Similar symptoms can also be produced, however, by mechanisms not involving immune reactions (see below).

Most respiratory allergens are macromolecules, mainly peptides or proteins. But low molecular weight substances can also produce specific immunological reactions in the airways (see List of allergens). Some of the low molecular weight respiratory allergens are also contact allergens.

The allergic reactions of the airways and conjunctiva which take the form of bronchial asthma or rhinoconjunctivitis mostly involve reaction of the allergen with specific IgE antibodies and belong to the manifestations of immediate type. However, in the deeper airways they can also first appear after a delay of several hours. Exogenous allergic al-
Veolitis is induced generally by allergen-specific immune complexes of IgG type and by cell-mediated reactions. Allergic reactions of immediate type can also cause systemic reactions and even anaphylactic shock.

The development of allergies of the respiratory passages, like that of contact allergies, is dependent on a number of factors. In addition to the substance-specific potential for causing sensitization, the amount of the allergen, the exposure period and the genetically determined disposition of the exposed person play a decisive role. Factors which increase the sensitivity of the mucosa may play a role in predisposing a person to allergy; they may be genetically determined or acquired, for example, during infections or exposure to irritant substances. Particular attention should be drawn to atopic diathesis which is characterized by an increased susceptibility to atopic eczema (neuromeratitis) or to allergic rhinitis and allergic bronchial asthma and is often associated with increased IgE synthesis.

In addition, there are also a number of relatively rare disorders of quite different kinds which are immunologically induced and so belong with the allergic phenomena such as, for example, manifestations involving granuloma formation (e.g. berylliosis) and certain exanthematous skin disorders.

A number of substances only induce the formation of antigens and then contact sensitization when they have previously been put into an energetically excited state by the absorption of light (photocontact sensitization, “photoallergization”). Likewise, many other substances can cause a skin reaction after exposure to light but without proof of an immunological mechanism (phototoxicity). Differentiation between phototoxicity and immunological photocontact sensitization can be difficult, as the classical factors that distinguish between (photo)allergic and (photo)toxic effects are not always found. In Anglo-American usage the expression “photosensitization” is used for both mechanisms. Although photocontact sensitization and phototoxicity involve primarily the physical activation (photosensitization) of a chromophore, both types of reactions are in principle clinically and diagnostically distinguishable.

It is still not possible to determine (and document scientifically) generally applicable threshold concentrations either for the induction of an allergy (sensitization) or for triggering the allergic reaction in an already sensitized person. The likelihood of induction increases with the concentration of the allergen to which persons are exposed. The concentrations required for the triggering of acute symptoms are generally lower than those required for sensitization. Even when MAK values are observed, the induction or triggering of an allergic reaction cannot be excluded with any certainty.

Sensitizing substances are indicated in the List of MAK and BAT Values under the abbreviation “Sens” by “Sa” or “Sh”. This designation refers only to the organ or organ system in which the allergic reaction is manifested. The pathological mechanism producing the symptoms is not taken into account. “Sh” designates substances which can cause allergic reactions of the skin and the mucosa close to the skin (skin-sensitizing substances). The designation “Sa” (substances causing airway sensitization) indicates that a sensitization can involve symptoms of the airways and also of the conjunctiva, and that other effects associated with reactions of immediate type are also possible. These include systemic effects (anaphylaxis) and local effects on the skin (urticaria). The latter reactions only result in the additional designation with “Sh” when the skin symptoms are relevant under workplace conditions. Substances which increase photosensitivity in exposed persons by mechanisms not involving immune reactions (e.g. furocoumarins) are not separately designated. On the other hand, substances which cause photocontact sensitization are designated with “SP” (e.g. bithionol). Separate criteria for their evaluation are not
necessary because, in essence, the criteria for the evaluation of substances causing contact sensitization may be applied. Some substances can cause local or systemic reactions the symptoms of which are entirely or largely identical to those of allergic reactions but which do not involve specific immunological mechanisms; they involve, e.g., the release of various mediators by mechanisms which are not immunological. These reactions are not a result of antigen-antibody interactions and can therefore also appear on the very first contact with the substance. Such reactions are induced, e.g., by sulfites, by benzoic acid and acetylsalicylic acid and their derivatives and by a variety of dyes such as tartrazine. Such substances are not designated with an “S”. However, attention is drawn to their potential for producing such non-immunological reactions in the documentation and in some cases in the List of MAK and BAT Values as well.

The criteria which are used in the evaluation of substances causing contact and airway sensitization are described below.

a. Criteria for the assessment of contact allergens

The allergological evaluation is based on a variety of information which must be seen as providing different qualities of evidence.

1) **Sufficient evidence** of an allergenic effect is provided by valid results from either i) or ii):

   i) effects in man
   
   – studies in which numerous clinically relevant cases of sensitization (i.e. association of symptoms and exposure) were observed in tests with large collectives of patients in at least two independent centres, or
   
   – epidemiological studies which reveal a relationship between sensitization and exposure, or
   
   – case reports of clinically relevant sensitization (association of symptoms and exposure) for more than one patient from at least two independent centres

   or

   ii) results of experimental studies
   
   – at least one positive result in an animal study without adjuvant carried out according to accepted guidelines, or
   
   – positive results from at least two less well-documented animal studies carried out according to accepted guidelines, one of which did not use adjuvant.
   
   – at least two positive results from in vitro studies carried out according to test guidelines, in which different key events of contact sensitization were tested

2) An allergenic effect can be considered **probable** on the basis described in i) and ii) below:

   i) effects in man
   
   – studies in which numerous clinically relevant cases of sensitization (association of symptoms and exposure) were observed in tests in just one centre, or
   
   – studies in which numerous cases of sensitization without details of clinical relevance were observed in tests with large collectives of patients in at least two independent centres

   and

   ii) results of experimental studies
– a positive result in an animal study with adjuvant carried out according to accepted guidelines or
– positive results from an in vitro study carried out according to test guidelines, or
– evidence from structural considerations based on sufficiently valid results for structurally closely related compounds.

3) An allergenic effect is not sufficiently documented, but also not excluded, when only the data listed below are available:
– insufficiently documented case reports, or
– only one positive result in an animal study with adjuvant carried out according to accepted guidelines, or
– positive results in animal studies which were not carried out according to accepted guidelines, or
– evidence from studies of structure-effect-relationships or from in vitro studies not carried out according to test guidelines.

Commentary:
Effects in man
The data obtained in numerous clinics and allergy centres from serial patch tests give us a useful picture of the frequency of skin sensitization and of the practical importance of the individual contact allergens. In contrast, useful results of reliable epidemiological studies are available for only few allergens.

The allergens which are observed most frequently, e.g., nickel, are not always the most potent sensitizers. On the other hand, very strongly sensitizing substances such as 2,4-dinitrochlorobenzene play quantitatively only a small role because only a small number of persons have sufficiently intensive contact with them. A number of highly potent contact allergens have been identified from clinical observations obtained in only a few patients, often after the first and only exposure (sometimes even after the first patch test). Examples of such substances are chloromethylimidazoline, diphenylcyclopropenone, quadratic acid diethyl ester, p-nitrobenzoyl bromide. For such exceptional substances, given proper scientific data, the evidence could be considered as ‘probable’ (category a2) even when the data come from just one centre.

The results of use tests in man with substances found at the workplace – often internal studies of the producing company – are of considerable value when they are carried out properly. Nowadays, the use of experimental sensitization tests must be rejected for ethical reasons, but historical results can be of importance in the evaluation of a substance.

Results of experimental studies
Animal studies to determine the potential of a substance to cause allergic sensitization were carried out with guinea pigs with or without the use of Freund’s complete adjuvant (FCA) and in the mouse. The most frequently used methods were the maximization test of Magnusson and Kligman (with FCA), and the Buehler test and LLNA (without FCA). The methods with FCA are generally more sensitive and their use can therefore occasionally result in overrating of the potential of sensitization. For this reason a positive result in a test without adjuvant is considered in the test criteria to be better evidence than a positive result in one with adjuvant.
The tests with experimental animals generally yield useful data; that is, for most substances they have yielded results in agreement with the data obtained in man. One advantage of the experimental animal methods is that dose-response relationships can be studied.

The test systems used for in vitro studies refer to individual key events of the sensitization phase, such as the binding of the test substance to proteins, the activation of keratinocytes, the maturation and migration of dendritic cells or the activation and proliferation of T lymphocytes. The plausibility of positive findings from in vitro studies is examined. For this purpose, for example, the physico-chemical properties of the substances, existing knowledge of their reactivity with proteins or structure–effect relationships can be taken into consideration. An evaluation scheme in which merely a minimum number of positive findings is required is considered by the Commission to be too rigid an instrument for scientific evaluations.

Substances to which people have not yet been exposed or known to be exposed (e.g. because they have been newly synthesized or are newly available products) and for which, therefore, clinical data cannot be available (neither negative nor positive results of clinical observations can be applied as a criterion) can also be classified as probably sensitizing (category a2) simply on the basis of positive results from animal studies with adjuvant carried out according to accepted guidelines. Even plausible positive results from experimental studies not carried out according to accepted guidelines can be accepted, provided theoretical chemical structural considerations or well-founded mechanistic aspects indicate that the substance is so closely related to known allergens that it may be expected to have analogous properties. Theoretical considerations require practical confirmation; therefore they are generally of less importance in the final evaluation and cannot be the only criterion for a potential sensitizing effect in the absence of other clinical or experimental data.

b. Criteria for the evaluation of respiratory allergens

The kinds of data which may be used in the evaluation of respiratory allergens are listed below; here too the different kinds of data provide different qualities of evidence.

1) Sufficient evidence of allergenic effects of a substance in the airways or the lungs is provided by valid data from:
   – studies or case reports of a specific hyperreactivity of the airways or the lungs which are indicative of an immunological mechanism from more than one patient and at least two independent testing centres. In addition, the (clinical) symptoms or adverse effects on the function of the upper or lower airways or the lungs must be shown to be associated with the exposure to the substance.

2) An allergenic effect can be considered probable on the basis of the results listed below:
   – one single case report of a specific hyperreactivity of the airways or the lungs

   and

   – other indications of sensitizing effects, e. g., a close structure-effect relationship with known airway allergens.

3) An allergenic effect is not sufficiently documented, but also not excluded, when only the data listed below are available:
– epidemiological studies which demonstrate an increased incidence of symptoms or impaired function in exposed persons, or
– studies or case reports of a specific hyperreactivity of the airways or the lungs in only one patient, or
– studies or case reports of sensitization (e.g. detection of IgE) without accompanying symptoms or impairment of function causally associated with the exposure, or
– positive results of animal studies, or
– positive results of in vitro studies, or
– structure-effect relationships with known respiratory allergens.

Commentary:
Generally, the classification is based on the results of epidemiological studies. Case reports do not always withstand critical examination, not least because of the difficulty or impossibility of carrying out adequate control studies. This is particularly true of inhalation-provocation tests. In addition, it is not always possible to produce adequate exposure data.

Symptoms are usually not a sufficient criterion for the designation of a substance as a respiratory allergen; generally, it is necessary to demonstrate sensitization and record objective changes such as exposure-related impairment of lung function or bronchial hyperreactivity to specific stimuli. An immunological mechanism can generally be recognized on the basis of in vivo (e.g. prick test) or in vitro test results, ideally by detection of a specific antibody after proved exposure.

For many substances, an immunological mechanism has not yet been demonstrated directly. Therefore, indirect evidence of immunological mechanisms can also be taken into account in classification. These include:
– the existence of a latency period between the start of the exposure and the appearance of the first symptoms (sensitization period),
– the triggering of symptoms with low concentrations of the substance which do not cause symptoms in appropriate controls,
– occasional delayed reactions or sequential immediate and delayed reactions (dual reactions) in the inhalation-provocation test,
– associated cutaneous symptoms such as urticaria or Quincke’s oedema.

An allergenic effect is not sufficiently documented, but also not excluded, when evidence of airway sensitization is available but the conditions described in the criteria are not fulfilled. In particular, epidemiological studies which demonstrate an increased incidence of symptoms or of impaired function in exposed persons (even with demonstrated dose-response relationships) do not provide sufficient evidence of sensitizing properties if no indications of a specific immunological mechanism are available. Likewise, studies or case reports which merely document workplace-related variations in lung function or bronchial hyperreactivity are not sufficient.

To date there is no thoroughly validated method to induce and detect respiratory allergies in an animal model.

In guinea pig models, sensitizing substances cause reactions like those seen in man. Sensitization can be induced by inhalation or by intradermal, subcutaneous injection or topical epidermal application. In these tests the respiratory hyperreactivity (respiration rate, tidal volume, respiratory minute volume, inhalation and exhalation times, exhalation rate) is measured. In the mouse IgE test, the potential of a substance to cause sensitization in BALB/c mice is determined as a function of the increase in the level of total IgE but not,
to date, as a function of substance-specific IgE. In studies in rats, effects are often investigated after topical induction and inhalation challenge treatment.

With these models no observed effect levels (NOEL) can be established but it is questionable whether they apply for man. Systematic comparative tests have not yet been carried out.

To date, sensitive and specific standardized in vitro methods for detecting low molecular weight respiratory allergens (and which can differentiate between respiratory and contact allergens) are not available. In addition, it is not possible to date to give a valid assessment of the sensitizing potential of the substance (with the exception of a few classes of substances such as e.g. the diisocyanates or the dicarboxylic acid anhydrides) on the airways on the basis of structural or mechanistic properties alone. These may, however, be useful when the data from experimental studies are ambiguous.

c. Designation of a substance as an allergen

Whether or not it is necessary to designate a substance as an allergen in the List of MAK and BAT Values is determined on the basis of the available evidence of allergic effects and, when possible, also on the basis of the expected levels of exposure.

- The substances characterized according to the criteria in Section IV a) or IV b) as belonging in Categories 1) or 2) are generally designated as allergens with “Sa”, “Sh”, “Sah” or “SP”.
  - Substances for which these criteria are fulfilled are also designated with an “S” when the observed sensitization is associated mainly with cofactors which are (only) relevant under workplace conditions (e.g. (previous) damage to the skin caused by chemical or physical agents).

- On the other hand, substances are not designated with an “S” when
  - in spite of extensive handling of the substance, very few (well-documented) cases of sensitization are observed, or
  - the observed cases of sensitization are mainly associated with cofactors which are not relevant under workplace conditions (e.g. the presence of eczema on the lower leg), or
  - the criteria of Section IV a) or IV b) resulted in classification of the substance in category 3). This also includes substances for which a positive result was obtained in a study with experimental animals using adjuvant (maximization test); at the same time, however, no case of contact sensitization in humans was observed despite relevant exposure. A substance is not designated with “Sa” if the reactions which occurred are caused by irritating or pharmacological effects, since these effects were taken into account in establishing a MAK value.

- Thus, in individual cases a designation which differs from the designation according to the EU regulations for hazardous substances is possible.

The criteria are to be seen as guidelines for an intelligible evaluation of the data but in certain special cases their strict application may not be obligatory.
**d. List of allergens**

The list below shows the substances in Section II a which are designated with Sa, Sh, Sah or SP. It does not claim to be a complete list of sensitizing substances and is subject to continual revision and extension.

- **Abietic acid** [514-10-3] (Sh)
  also includes disproportionation and transposition products. An immunological genesis of the asthma often seen in persons working with materials containing abietic acid has not been proved.

- **Acrylamide** [79-06-1] (Sh)

- **Acrylic acid 2-ethylhexyl ester** [103-11-7] (Sh)

- **Acrylic acid 2-hydroxyethyl ester** [818-61-1] (Sh)

- **Acrylic acid hydroxypropyl ester** (all isomers) [25584-83-2] (Sh)

- **Acrylonitrile** [107-13-1] (Sh)

- **Alkali persulfates** (Sah)

- **Allyl glycidyl ether** [106-92-3] (Sh)

- **p-Aminoazobenzene** [60-09-3] (Sh)

- **o-Aminoazotoluene** [97-56-3] (Sh)

- **4-Aminodiphenylamine** [101-54-2] (Sh)

- **2-Aminoethanol** [141-43-5] (Sh)

- **2-(2-Aminoethoxy)ethanol** [929-06-6] (Sh)

- **3-Aminomethyl-3,5,5-trimethyl-cyclohexylamine** (Isophorone diamine) [2855-13-2] (Sh)

- **3-Aminophenol** [591-27-5] (Sh)

- **3-Aminophenol** [123-30-8] (Sh)

- **Ammonium persulfate** [7727-54-0] (Sah)

- **α-Amylase** (Sa)

- **α-Amylecinnamaldehyde** [122-40-7] (Sh)

- **Aniline** [62-53-3] (Sh)

- **Animal hair, epithelia and other materials derived from animals** (Sah)

- **Azinphos-methyl** [86-50-0] (Sh)

- **Benomyl** [17804-35-2] (Sh)

- **1,2-Benzisothiazol-3(2H)-one** [2634-33-5] (Sh)

- **Benzyl alcohol mono(poly)hemiformal** [14548-60-8] (Sh)

  releases formaldehyde

- **Beryllium** [7440-41-7] and its inorganic compounds (Sah)

- **N,N-Bis(2-ethylhexyl)-(1,2,4-triazole-1-yl)methanamine** [91273-00-7] (Sh)

- **Bisphenol A (4,4’-Isopropylidenediphenol)** [80-05-7] (SP)

- **Bisphenol A diglycidyl ether** [1675-54-3] (Sh)

- **Bisphenol A diglycidyl methacrylate** [1565-94-2] (Sh)

- **Bisphenol A ethoxylate dimethacrylate** [24448-20-2] (Sh)

- **Bisphenol A glycerolate** [4687-94-9] (Sh)

- **Bisphenol F diglycidyl ether** (Sh)

- **Bithionol** [97-18-7] (SP)

- **Bromelain** [9001-00-7] (Sa)

- **2-Bromo-2-nitro-1,3-propanediol** [52-51-7] (Sh)

  use forbidden as component of metal-working fluids and corrosion inhibitors: see “GefStoffV 2010, Anhang II (zu §16 Absatz 2), Nr. 4”

- **1,4-Butanediol diacrylate** [1070-70-8] (Sh)

- **1,4-Butanediol diglycidyl ether** [2425-79-8] (Sh)
1,4-Butanediol dimethacrylate [2082-81-7] (Sh)
1-Butanethiol [109-79-5] (Sh)
Butanone oxime [96-29-7] (Sh)
n-Butyl acrylate [141-32-2] (Sh)
tert-Butyl acrylate [1663-39-4] (Sh)
★ 2-Butyl-1,2-benzisothiazolin-3-one [4299-07-4] (Sh)
p-tert-Butylcatechol [98-29-3; 27213-78-1] (Sh)
n-Butyl glycidyl ether (BGE) [2426-08-6] (Sh)
tert-Butyl glycidyl ether [7665-72-7] (Sh)
n-Butyl methacrylate [97-88-1] (Sh)
p-tert-Butylphenol [98-54-4] (Sh)
p-tert-Butylphenyl glycidyl ether [3101-60-8] (Sh)
Butyrolactone [110-65-6] (Sh)
N-Carboxyanthranilic anhydride [118-48-9] (Sh)
Cellulases (Sa)
Cereal flour dusts Rye, Wheat (Sa)
2-Chloroacetamide [79-07-2] (Sh)
Chloroacetamide-N-methylol (CAM) [2832-19-1] (Sh)
releases formaldehyde
Chloroacetic acid methyl ester [96-34-4] (Sh)
m-Chloroaniline [108-42-9] (Sh)
p-Chloroaniline [106-47-8] (Sh)
p-Chloro-m-cresol [59-50-7] (Sh)
1-Chloro-2,4-dinitrobenzene [97-00-7] (Sh)
1-Chloro-2,3-epoxypropane (Epichlorohydrin) [106-89-8] (Sh)
5-Chloro-2-methyl-2,3-dihydroisothiazol-3-one and 2-Methyl-2,3-dihydroisothiazol-3-one [26172-55-4; 2682-20-4] mixture in ratio 3:1 (Sh)
Chlorothalonil [1897-45-6] (Sh)
Chlorpromazine (2-Chloro-10-(3-dimethylaminopropyl)phenothiazine) [50-53-3] (SP)
Chromium(III) compounds (Sh)
do not apply for chromium(III) oxide and similar poorly soluble chromium(III) compounds
Chromium(VI) compounds (inhalable fraction) (Sh)
barium chromate and lead chromate are not designated with “Sh”
Cinnamaldehyde [104-55-2] (Sh)
Cinnamyl alcohol [104-54-1] (Sh)
Cobalt [7440-48-4] and cobalt compounds (inhalable fraction) (Sah)
Cresyl glycidyl ether mixture of isomers [26447-14-3] o-isomer [2210-79-9] (Sh)
Cyanamide [420-04-2] (Sh)
Cyanuric chloride [108-77-0] (Sh)
N-Cyclohexyl-2-benzothiazolesulfenamide [95-33-0] (Sh)
N-Cyclohexyl-N’-phenyl-p-phenylenediamine [101-87-1] (Sh)
Diacetyl [431-03-8] (Sh)
4,4’-Diaminodiphenylmethane [101-77-9] (Sh)
1,5-Diaminonaphthalene [2243-62-1] (Sh)
2,2’-Dibenzothiazyl disulfide [120-78-5] (Sh)
2,2-Dibromo-2-cyanacetamide [10222-01-2] (Sh)
1,2-Dibromo-2,4-dicyanobutane [35691-65-7] (Sh)
3,4-Dichloroaniline [95-76-1] (Sh)
1,3-Dichloropropene (cis and trans) [542-75-6] (Sh)
Dicyclohexylcarbodiimide [538-75-0] (Sh)
Dicyclohexyl methane 4,4'-diisocyanate [5124-30-1] (Sh)
Diethanolamine [111-42-2] (Sh)

Reaction with nitrosating agents can result in the formation of carcinogenic N-nitrosodiethanolamine, see Section III “Amines which form carcinogenic nitrosamines on nitrosation”.

Diethyleneglycol diacrylate [4074-88-8] (Sh)
Diethyleneglycol dimethacrylate [2358-84-1] (Sh)
Diethylenetriamine [111-40-0] (Sh)

Diethylene glycol diacrylate [4074-88-8] (Sh)
Diethylene glycol dimethacrylate [2358-84-1] (Sh)
Diethylenetriamine [111-40-0] (Sh)

N,N'-(Dimethylamino)ethyl methacrylate [2867-47-2] (Sh)
N-(1,3-Dimethylbutyl)-N'-phenyl-p-phenylenediamine [793-24-8] (Sh)

1,1-Dimethylhydrazine [57-14-7] (Sh)
1,2-Dimethylhydrazine [540-73-8] (Sh)

Dimethylol dihydroxyethyleneurea [1854-26-8] (Sh)
1,3-Dimethylol-5,5-dimethyl hydantoin [6440-58-0] (Sh)

Disperse blue 106/124 [68516-81-4; 15141-18-1] (Sh)
Disperse Orange 3 [730-40-5] (Sh)
Disperse Red 1 [2872-52-8] (Sh)
Disperse Red 17 [3179-89-3] (Sh)
Disperse Yellow 3 [2832-40-8] (Sh)

Disulfiram [97-77-8] (Sh)

2,2'-Dithiobis(N-methylbenzamide) [2527-58-4] (Sh)
3,4-Epoxy cycl hexane carboxylic acid (3,4-epoxy cyclohexylmethyl) ester [2386-87-0] (Sh)

1,2-Epoxypropane [75-56-9] (Sh)

Ethyl acrylate [140-88-5] (Sh)
5-Ethyl-3,7-dioxa-1-azabicyclo[3.3.0]octane (EDAO) [7747-35-5] (Sh)

Ethylene diamine [107-15-3] (Sh)
Ethylene glycol dimethacrylate [97-90-5] (Sh)

2-Ethylhexyl mercaptoacetate [7659-86-1] (Sh)
Eugenol [97-53-0] (Sh)
Farnesol [4602-84-0] (Sh)
Formaldehyde [50-00-0] (Sh)
Formaldehyde condensation products with p-tert-butylphenol (low molecular) (Sh)
Formaldehyde condensation products with phenol (low-molecular) (Sh)

Geraniol [106-24-1] (Sh)
Glutaraldehyde [111-30-8] (Sh)

Glyceryl monothioglycolate [30618-84-9] (Sh)
Glycidyl methacrylate [106-91-2] (Sh)
Glycidyl trimethylammonium chloride [3033-77-0] (Sh)
Glyoxal [107-22-2] (Sh)

Gold [7440-57-5] and its inorganic compounds (Sh)

Hard metal containing tungsten carbide and cobalt (inha lable fraction) (Sh)
Hexahydrophthalic acid diglycidylester [5493-45-8] (Sh)
Hexahydrophthalic anhydride [85-42-7] (Sa)
1,6-Hexamethylene diisocyanate [822-06-0] (Sah)
Hexamethylenetetramine [100-97-0] (Sh)
releases formaldehyde
1,6-Hexanediol diacrylate [13048-33-4] (Sh)
Hydrazine [302-01-2] (Sh)
Hydrazine hydrate [7803-57-8] and hydrazine salts (Sh)
Hydroquinone [123-31-9] (Sh)
Hydroxycitronellal [107-75-5] (Sh)
2-Hydroxyethyl methacrylate [868-77-9] (Sh)
Hydroxylamine [7803-49-8] and its salts (Sh)
4-(4-Hydroxy-4-methyl pentyl)-3-cyclohexene-1-carboxaldehyde (Lyral) [31906-04-4] (Sh)
3-Iodo-2-propynyl butylcarbamate [55406-53-6] (Sh)
Isobornyl acrylate [5888-33-5] (Sh)
Isoeugenol [97-54-1] (Sh)
Isophorone diisocyanate [4098-71-9] (Sah)
4-Isopropylphenyl isocyanate [31027-31-3] (Sh)
N-Isopropyl-N'-phenyl-p-phenylenediamine [101-72-4] (Sh)
D-Limonene [5989-27-5] (Sh)
D,L-Limonene [138-86-3] and similar mixtures (Sh)
L-Limonene [5989-54-8] (Sh)
Maleic anhydride [108-31-6] (Sah)
Manganous ethylenebis(dithiocarbamate) (Maneb) [12427-38-2] (Sh)
Merbromin [129-16-8] (Sh)
2-Mercaptobenzothiazole [149-30-4] (Sh)
Mercury [7439-97-6] and its inorganic compounds (as Hg) (Sh)
Mercury, organic compounds (Sh)
Methacrylic acid ethyl ester [97-63-2] (Sh)
Methacrylic acid 2-hydroxypropyl ester [923-26-2] (Sh)
Methacrylic acid methyl ester [80-62-6] (Sh)
Methenamine 3-chloroallylchloride [4080-31-3] (Sh)
releases formaldehyde
Methyl acrylate [96-33-3] (Sh)
N-Methyl-bis(2-chloroethyl)amine (nitrogen mustard) [51-75-2] (Sh)
N,N'-Methylene-bis(5-methylazolidine) [66204-44-2] (Sh)
4,4'-Methylene dimorpholine [5625-90-1] (Sh)
releases formaldehyde
4,4'-Methylene diphenyl diisocyanate (MDI) [101-68-8] (inhalable fraction) see also “polymeric MDI” (Sah)
2-Methyl-4-isothiazolin-3-one [2682-20-4] (Sh)
★ 2-Methyl-2-propanethiol [75-66-1] (Sh)
Methyltetrahydrophthalic anhydride [11070-44-3] (Sa)
N-Methyl-N,2,4,6-tetranitroaniline [479-45-8] (Sh)
Methyl vinyl ketone [78-94-4] (Sh)
Microbial rennets: endothiapepsin and mucorpepsin (Sa)
Monomethylhydrazine [60-34-4] (Sh)
2-(4-Morpholinylmercapto)benzothiazole [102-77-2] (Sh)
Naled [300-76-5] (Sh)
1,8-Naphthalic anhydride [81-84-5] (Sh)
1,5-Naphthylene diisocyanate [3173-72-6] (Sa)
Natural rubber latex [9006-04-6] (Sah)
Nickel and nickel compounds (inhala ble fraction) (Sah)
Regarding compounds which have been found to be unequivocally carcinogenic in man, see Toxikologisch-arbeitsmedizinische Begründung von MAK-Werten, available from the publisher: Wiley-VCH, D-69451 Weinheim. There is sufficient evidence of sensitizing effects on the respiratory tract only for water-soluble nickel compounds.

4-Nitro-4′-aminodiphenylamine-2-sulfonic acid [91-29-2] (Sh)
4-(2-Nitrobutyl)morpholin [5307-14-2] (Sh)
Oak moss extracts (Sh)
2-Octyl-4-isothiazolin-3-one [26530-20-1] (Sh)
Olaquindox (N-(2-Hydroxyethyl)-3-methyl-2-quinoxalinecarboxamide 1,4-dioxide) [23696-28-8] (SP)
Palladium [7440-05-3] and palladium compounds
Palladium chloride [7647-10-1] (Sh)
Oak moss extracts (Sh)
Papain [9001-73-4] (Sa)
Pentaerythritol triacrylate [3524-68-3] (Sh)
2,3-Pentanedione [600-14-6] (Sh)
Pepsin [9001-75-6] (Sa)
o-Phenylenediamine [95-54-5] (Sh)
m-Phenylenediamine [108-45-2] (Sh)
p-Phenylenediamine [106-50-3] (Sh)
The "Ursol-Asthma" which used to be observed frequently, especially in persons dyeing furs with p-phenylenediamine, has not been demonstrated unequivocally to involve respiratory allergy to p-phenylenediamine; see Toxikologisch-arbeitsmedizinische Begründung von MAK-Werten (18th issue, 1992) and in English translation in Occupational Toxicants Volume 6, VCH-Verlagsgesellschaft mbH, Weinheim 1994
Phenyl glycidyl ether (PGE) [122-60-1] (Sh)
Phenylhydrazine [100-63-0] (Sh)
Phenyl isocyanate [103-71-9] (Sah)
N-Phenyl-1-naphthylamine [90-30-2] (Sh)
N-Phenylenediamine [106-50-3] (Sh)
Phthalic anhydride [85-44-9] (Sa)
Phytases (Sa)
Picric acid [88-89-1] (Sh)
Picryl chloride [88-88-0] (Sh)
Piperazine [110-85-0] (Sah)
Use in metal-working fluids is not permitted; see TRGS 611. Reaction with nitrosating agents can result in the formation of carcinogenic N,N′-dimethyrosopiperazine, see Section III "Amines which form carcinogenic nitrosamines on nitrosation".
Platinum compounds (Chloroplatinates) (Sah)
A peak concentration of 2 μg/m³ should not be exceeded.
"polymeric MDI" [9016-87-9] (inhala ble fraction) see also 4,4′-Methylene diphenyl diisocyanate (MDI) (Sah)
"polymeric MDI" (pMDI) is a technical grade MDI, containing 30% – 80% w/w 4,4′-methylene diphenyl isocyanate (MDI); the remainder consists of MDI oligomers and MDI homologues.
Pyrethrum [8003-34-7] (Sh)
does not apply for the constituents of insecticides (pyrethrins and cinerins) or for synthetic derivatives (pyrethroids) but only for the constituents of the plant drug and its crude extracts, including α-methylene sesquiterpene lactones (e.g. pyrethrosin)
Quinone [106-51-4] (Sh)
Resorcinol [108-46-3] (Sh)
Ricinus protein (Sa)
Rosin (colophony) [8050-09-7] (Sh)
An immunological genesis of the asthma often seen in persons working with materials containing rosin has not been proved.

Rubber components:
  - Dithiocarbamates (Sh)
  - Thiazoles (Sh)
  - p-Phenylenediamine compounds (Sh)
  - Thiram (Sh)
Sesquiterpene lactones (Sh)
Sodium diethyldithiocarbamate [148-18-5] (Sh)
Use in metal-working fluids is not permitted: see TRGS 611. Reaction with nitrosating agents can result in the formation of carcinogenic N-nitrosodiethylamine, see Section III “Amines which form carcinogenic nitroamines on nitrosation”.
Soya bean constituents (Sa)
Subtilisins (Sa)
Tall oil, distilled [8002-26-4] (Sh)
only applies to tall oil distillates containing abietic acid, see also Toxikologisch-arbeitsmedizinische Begründung von MAK-Werten (34th issue 2002)
Tetraethylene glycol diacrylate [17831-71-9] (Sh)
Triethylene glycol dimethacrylate [109-17-1] (Sh)
Tetraglycidyl-4,4′-methylenedianiline [28768-32-3] (Sh)
Tetrahydrofurfuryl methacrylate [2455-24-5] (Sh)
Thimerosal [54-64-8] (Sh)
Thioglycolates (Sh)
Thioglycolic acid [68-11-1] (Sh)
Thiourea [62-56-6] (Sh SP)
Thiram [137-26-8] (Sh)
Reaction with nitrosating agents can result in the formation of carcinogenic N-nitrosodimethylamine, see Section III “Amines which form carcinogenic nitroamines on nitrosation”.
Toluene-2,4-diamine [95-80-7] (Sh)
Toluene-2,5-diamine [95-70-5] (Sh)
Toluene diisocyanates (Sa)
p-Toluidine [106-49-0] (Sh)
Triethylene glycol diacrylate [1680-21-3] (Sh)
Triethylene glycol dimethacrylate [109-16-0] (Sh)
Triethylenetetramine [112-24-3] (Sh)
Triglycidyl-p-aminophenol [5026-74-4] (Sh)
Triisobutyl phosphate [126-71-6] (Sh)
Trimellitic anhydride [552-30-7] (fume) (Sa)
Trimethylhydroquinone [700-13-0] (Sh)
Trimethylolpropane triacrylate [15625-89-5] (Sh)
Trimethylquinone [935-92-2] (Sh)
2,4,6-Trinitrotoluene [118-96-7] (Sh)
Triphenyl phosphine [603-35-0] (Sh)
Tripropylene glycol diacrylate [42978-66-5] (Sh)
N,N,N’-Tris(β-hydroxyethyl)hexahydro-1,3,5-triazine [4719-04-4] (Sh) releases formaldehyde
Trypsin and Chymotrypsin [9002-07-7; 9004-07-3] (Sa)
Turpentine [8006-64-2] (Sh)
Vinylcarbazole [1484-13-5] (Sh)

Woods
- Acacia melanoxylon R.Br., Australian blackwood (Sh)
- Brya ebenus DC., cocus wood (Sh)
- Chlorophora excelsa (Welw.) Benth. & Hook, iroko, kambala (Sh)
- Dalbergia latifolia Roxb., East Indian rosewood, Bombay blackwood (Sh)
- Dalbergia melanoxylon Guill. et Perr., African blackwood (Sh)
- Dalbergia nigra Allem., Brazilian rosewood (Sh)
- Dalbergia retusa Hemsl., cocobolo, rosewood (Sh)
- Dalbergia stevensonii Standley, Honduras rosewood (Sh)
- Distemonanthus benthamianus Baill., ayan (Sh)
- Grevillea robusta A.Cunn., Australian silky oak (Sh)
- Khaya anthothea C.DC., African mahogany (Sh)
- Machaerium scleroxylon Tul., pao ferro, Santos rosewood (Sh)
- Mansonia altissima A.Chev., mansonia, pruno, bété (Sh)
- Paratecoma peroba (Record) Kuhl., ipe peroba (Sh)
- Tectona grandis L.f., teak (Sh)
- Terminalia superba Engl. u. Diels, fraké, limba, afara, white afara (Sa)
- Thuja plicata (D.Don.) Donn., western red cedar, giant arborvitae, shinglewood (Sah)
- Triplochiton scleroxylon K.Schum., obeche, wawa, African whitewood (Sah)
- Xylanases [37278-89-0] (Sa)
- m-Xylylenediamine [1477-55-0] (Sh)
- Ziram [137-30-4] (Sh)

e. Evaluation of members of specific groups of substances

For numerous substances, a reliable evaluation of the sensitizing effects according to the criteria described above is not possible. Often the substance of interest is one of the many members of a specific group of substances. Valid data for man are generally available only for individual members of such groups of substances, those considered to be typical of the group and commercially available as test substances because they are used for this purpose. With other less frequently used substances or substances for which no reliable data as to the extent of their use is available, patch tests are carried out relatively rarely, with some substances – because of the danger of sensitization – only in special cases. The effects in man are made even more difficult to assess because these substances are often used in mixtures with other members of the same group of substances and so can be involved in concomitant sensitizations and in cross-reactions. Mixtures containing members of other groups of allergenic substances are also often used and then too it is not readily possible to determine the causality of the observed disorder. In addition, it is not always possible to establish all the components of the mixture involved and so an allergologically relevant component can be missed. Therefore, substances which are not listed in the List of MAK
and BAT Values and which belong to groups of substances known to be able to cause sensitization should be handled with appropriate care.

It is emphasized that in general there is no danger of sensitization from fully polymerized plastics. A danger of sensitization, but only little, can result from release of residual monomer, e.g. during mechanical processing.

The groups of substances of which numerous members have sensitizing effects on the skin or airways include:

- acrylates and methacrylates
- dicarboxylic acid anhydrides
- diisocyanates
- glycidyl compounds (epoxides)
- dusts containing enzymes
- certain plant or animal proteins

In current usage, the general expression “isocyanate” is used for both monoisocyanates and di- or polyisocyanates. These classes of compounds must be strictly differentiated with regard to the areas of use as well as the toxicological and allergological properties: monoisocyanates such as methyl isocyanate or phenyl isocyanate are used practically almost exclusively during syntheses as precursors or intermediate products, for example in the production of insecticides or pesticides. On the other hand, diisocyanates in particular are used in the production of polyurethanes, which are processed to adhesives, insulating foams, lacquers, and foams. Findings of a sensitizing effect on the respiratory tract in humans are available almost only for diisocyanates because of the widespread use. Also monoisocyanates can have a marked irritating effect on the airways and a sensitizing effect on the respiratory tract cannot be excluded. However, data for the diisocyanates, which are assessed as potent respiratory allergens, does not justify classifying monoisocyanates as substances causing airway sensitization solely in analogy; an evaluation of the individual case is necessary.

The antibiotics are a group of substances which are very heterogeneous in chemical structure and in sensitizing effects. Persons may be exposed to these substances at work during isolation or production of the active principles, during preparation and packing of the medicines, and during their medical use in man and animals. Sensitization of the skin can result in the development of a systemic allergic reaction — including anaphylaxis — or haematogenic contact dermatitis after later parenteral use. Sensitization of the airways and allergic contact dermatitis have often been reported in persons exposed occupationally to β-lactam antibiotics (especially penicillins and cephalosporins). Allergic reactions after medicinal use of these antibiotics (enteral or parenteral), on the other hand, generally take the form of IgE-mediated reactions of immediate type. However, other immunological reactions such as medicinal skin eruptions and, in serious cases, also erythema exsudativum multiforme, Stevens-Johnson syndrome or Lyell’s syndrome can also develop. Some of the aminoglycoside antibiotics are also conspicuous for the relatively high rates of sensitization which they produce, especially as a result of application of medicaments to (chronically) eroded skin. Sensitization of the skin resulting from occupational contact with aminoglycosides has been reported more rarely. Individual macrolide antibiotics, especially those used in veterinary medicine, can cause immunological reactions in the airways and also (inhalation-mediated) contact dermatitis. Only rare individual cases of contact allergy or allergic airway reactions to most other macrolide antibiotics and to polyene or peptide antibiotics and tetracyclines have been reported.
Components of fragrance mixtures, another group of substances which differ widely in their structures, allergenic potencies and clinical significance, must also be evaluated individually. This becomes clear even on consideration of the components of the standard fragrance test mixtures. For many other fragrance components the clinical findings are inadequate because the substances are never or only very rarely used in patch tests. Non-occupational exposure to these practically ubiquitous fragrance mixtures can rarely be excluded and this makes the demonstration that sensitization was occupational more difficult.
V Aerosols

a. General definitions

Aerosols are multiphase systems of particulate solids or liquids dispersed in gases, in particular in air. Aerosols which occur at the workplace include dusts, fumes and mists.

Dusts consist of particles of solid matter which have been produced mostly in mechanical processes or have been stirred up and dispersed in gases, in particular in air.

Airborne particles can be composed of compact fine particles and free ultrafine primary particles but can also consist of their aggregates or agglomerates. The following nomenclature will be used:

- **Primary particles** are compact single particles which are recognizable as such under the electron microscope, even when they are associated with other aggregates or agglomerates.
- **Aggregates** are groups of primary particles which are firmly bound with each other.
- **Agglomerates** are groups of particles (primary particles or aggregates), which are held together by weak forces (in particular van der Waals forces). They can be broken apart again into smaller units by input of a low level of energy (e.g. by treatment of an aqueous suspension with ultrasound).

Fibrous dusts consist of inorganic or organic fibres of certain dimensions dispersed in gases, in particular in air (see Section III Carcinogenic substances, Fibrous dust). Inorganic fibrous dusts arise during mechanical processing especially of fibrous minerals and of products made from or containing natural or man-made fibres. Fibre-shaped fragments of non-fibrous minerals and of non-fibrous products also count as fibrous dust. Fibres can also be released by erosion processes.

Fumes are dispersions of very finely divided solid matter in gases, in particular in air. They arise in thermal processes (e.g., welding fumes, metal oxide fumes, soot and flue ash) or chemical processes (e.g., the reaction of ammonia with hydrogen chloride).

Mists are dispersions of particulate liquids (droplets) in gases, in particular in air. They arise during nebulization of liquids, during condensation from the vapour phase and during chemical processes (e.g., oil mist, hydrogen chloride in damp air).

Ultrafine particles and their aggregates and agglomerates see Section Vh.

Ultrafine particles as components of dusts and fumes are identified by a mobility-equivalent diameter ($D_M < 100 \text{ nm}$) (corresponds to a diffusion-equivalent diameter ($D_{\text{ae}}$))

27) The terms “aggregates” and “agglomerates” are not used uniformly on the international level. See, for example, the definitions of ISO 14887, NIST, BSI, IUPAC, etc.

28) Measurement of the shape and size of airborne particles in an aerosol cannot distinguish between compact particles and aggregates and agglomerates of similar size. Nor is differentiation between liquid droplets and solid particles possible. Since air analyses even with the electron microscope cannot distinguish whether aggregates or agglomerates are involved in the aggregated groups of ultrafine primary particles observed, such groups of particles are in practice often combined with the designation of “aggregates and agglomerates (A + A)”.

List of MAK and BAT Values 2020. DFG, Deutsche Forschungsgemeinschaft
DOI: 10.34865/mbwl_2020_eng
German Medical Science | PUBLISSO 2020
The respirable dust fraction (R) which can enter the alveoli and the inhalable fraction (I) of the dust are the fractions which are relevant for health (according to DIN/EN 481) and for these there are threshold values (see Section Vd).

b. Properties of aerosols which determine their effects

Particulate substances encountered at the workplace can cause various disorders of the respiratory organs. These are mostly a result of overloading of the lung, or of carcinogenic, fibrotic (fibrogenic) or allergenic effects, or of chemical irritation or toxicity. The effects are determined in part by the site of deposition of inhaled particles or droplets in the respiratory tract. The deposition pattern of the particles or droplets and the intensity and rapidity of appearance of the effects are determined essentially by the size, mass, specific density, shape, surface area, chemical composition, biopersistence, solubility, and hygroscopic properties of the particles.

These parameters can act independently of one another as well as in combination. The effects of coarser particles are largely proportional to the mass or the volume.

With all aerosols of ultrafine particles as compared with coarser particles, an important role is played by the large specific surface area, the low density of the agglomerate compared with the material density of ultrafine particles, the slight solubility and the uptake into the cells. These properties of ultrafine particles can result in other toxicologically relevant effects. When aggregates or agglomerates of ultrafine particles are deposited, their effects also depend on whether they disaggregate or not in the fluid environment of the lung.

In the milieu of the lung fluids, particulate substances have as a rule a bioavailability other than indicated by the physicochemical solubilities reported in the literature, which are mostly determined in water, or where appropriate also in other solvents. Thus, the poor solubility suggested by the reported data for a substance is not directly applicable to the lung tissue. With the diversity of particles deposited in the lung fluids, also changes in toxicity can occur in individual cases through masking and demasking, e.g., in the presence of particles with adsorbing surfaces.

In lung fluids, not only the dissolution of particles (such as metal particles) and the absorption of dissolved substances are observed, but also changes in the crystalline structure. For example, certain glass fibres become jellylike (that is, they lose their rigidity and become rubberlike), or chrysotile fibres are split into their individual fibrils, which in this case causes an increase in the number of particularly fine fibres. Such processes of splitting have now been identified for other fibrous substances. The properties of ultrafine fibres (such as nanotubes) have not yet been adequately investigated.

c. Inhalation, deposition and clearance of aerosols in the respiratory tract

Uptake

The uptake of dusts and fumes into the body takes place mostly via the airways. Mists can also be taken up in relevant amounts through the skin.
Transport and deposition of particulate solids and droplets in the airways are determined by the size, shape and specific density of the particles or droplets.

The distribution of the inhaled aerosol within the various parts of the airways is affected not only by the properties of the particles but also markedly by:

1. individual differences in the anatomy of the airways,
2. individual breathing habits, especially the different transition from nasal to oral breathing during physical activity and differences in respiration rate, respiratory flow and thus respiratory volumes,
3. pathophysiological changes in the respiratory organs (e.g. obstructive airway disease).

The critical dimension for aerosol particles with a diameter > 0.5 μm is the aerodynamic diameter ($D_{ae}$). The aerodynamic diameter of a particle whatever its shape and density is defined as the geometric diameter of a sphere with the density 1 g/cm$^3$ which sediments at the same rate as the particle in still or laminarly flowing air. This definition also applies for fibrous particles. The aerodynamic diameter of a fibre is determined essentially by the diameter of the fibre and less by its length. For long fibres ($l >> d$) the aerodynamic diameter is about three times the fibre diameter.

For isometric particles with diameters less than 0.5 μm, the diffusion-equivalent diameter ($D_d$) determines the site of deposition in the airways. The diffusion-equivalent diameter of a particle is defined as the geometric diameter of a sphere which diffuses at the same rate as the particle in the same dispersion medium (at the workplace, in air).

On principle, it is necessary to distinguish between the aerosol fractions which enter the various regions of the airways during inhalation and exhalation and the parts of these fractions which are deposited in these airway regions.

Deposition can take place during inhalation or during exhalation. Some of the inhaled particles are not deposited in the airways but are exhaled.

Of particular importance for occupational health are the aerosol fractions which penetrate into the respirator organs and are deposited there; they are described below (Figure 1).

Only a fraction of the total particles are present in the breathing zone (the part designated as the inhaled fraction) is inhaled. It is determined by the flow rates into the mouth and nose as well as the conditions of air flow around the head. Whereas almost all the smaller particles ($D_{ae} < 5 \mu m$) are inhaled, the fraction of particles which can be inhaled decreases with increasing particle size.

Of the particles in the inhaled fraction, larger solid particles and droplets ($D_{ae} > 15 \mu m$) are deposited almost exclusively in the extrathoracic region, i.e., in the region of the nose, pharynx and larynx.

Of the fraction which enters the thorax (thoracic fraction) some of the smaller solid particles and droplets are deposited in the tracheobronchial region or in the alveolar region.

The fraction which enters the alveolar region (respirable fraction) contains those particles which can penetrate into the airway regions which are not ciliated, i.e., the alveoli, the terminal non-ciliated bronchioles and the alveolar ducts; some of this fraction is deposited there.

Deposition and Clearance

**Fraction deposited in the nose-pharynx-larynx region (extrathoracic fraction)**

This is the aerosol fraction which is deposited after inhalation in the region of the nose, the mouth, the throat and the larynx; part of this fraction can be swallowed and so enter the
digestive tract. The clearance from this region of the respiratory tract is complete within a few hours at most.

**Fraction deposited in the tracheobronchial region**
This is that part of the fraction which enters the thorax which is deposited in the region of the tracheobronchial tree in which the mucociliary clearance mechanism operates.

Isometric particles with diameters > 7 μm are completely eliminated from the tracheobronchial region of a healthy person within one day. There is evidence that some of the smaller particles and especially ultrafine particles may persist for several weeks in the tracheobronchial region. The rate of transport out of this region decreases with decreasing particle size.

**Fraction deposited in the alveolar region**
This is the fraction of the aerosol which is deposited in the alveolar region including the non-ciliated bronchioles (bronchioli respiratorii) and the alveolar ducts (ductuli alveolares). In this region there is no mucociliary clearance. This aerosol fraction can be transferred via the pulmonary interstitial tissue (interstitium) into the lymphatic system and especially ultrafine particles can also enter the blood capillaries. Alveolar macrophages can take in particles by phagocytosis and transport these through the tracheobronchial tree; swallowing then transfers them into the digestive tract. The half-times for the elimination
from the lung of insoluble particles deposited in the alveolar region are of the order of months or years.

**Total deposited fraction**
The total deposited fraction is that aerosol fraction which is inhaled but then not exhaled. This fraction includes the particles and droplets deposited in the nose, pharynx and larynx, the tracheobronchial tree and the non-ciliated deeper airways and thus the entire range of the inhalable dust fraction.

It should be remembered that deposited droplets and soluble particles spread on the surfaces of the respiratory organs and lose their droplet or particulate form. Soluble components can be absorbed, which means that the constituents of the dissolved particles may be distributed and their cellular effects may no longer be only localized. They can enter the circulation and the lymphatic system and have systemic effects.

The insoluble fraction can be phagocytised by macrophages or, with certain limitations, be taken in by lung epithelial cells and transported from the alveolar region into the interstitial tissue. Especially ultrafine particles can enter the bloodstream by this route. Components which are neither dissolved nor absorbed can be transported from the tracheobronchial tree towards the larynx by mucociliary clearance, as can particles deposited in the nose-pharynx-larynx region. From there, they are swallowed, enter the digestive system and perhaps have effects there, or they are removed from the breathing zone or the body by coughing up and spitting out or by blowing of the nose.
d. Conventions for measuring concentrations of particles: definition of fractions

Measured particle concentrations should reflect the concentrations of those particles responsible for the pathogenic effects in the respiratory organs, as described in Section c. This requires that in sampling and assay devices the particles from the air are fractionated according to their aerodynamic diameters in a way which reflects the deposition pattern of the particles in the airways during breathing.

However, for measuring and sampling devices for the determination of various particle fractions in the workplace air, international conventions have been established for only three deposition curves (see DIN/EN 481, 1993). They are based on average analytical values obtained under defined experimental conditions, values for the aerosol fractions which enter the various regions of the respiratory organs.

Thus the analytical methods yield data for the three fractions which may be deposited, in each case including the fraction which is exhaled. That means that the aerosol fractions determined are those which enter the regions of the lung which are relevant for occupational health (see Figures 1 and 2).

1. **Inhalable fraction** (I): the deposition curve expresses, as a function of aerodynamic diameter, the mean probability that particles and droplets will be inhaled (inhaled fraction).

2. **Thoracic fraction**: the curve for this part of the inhalable fraction expresses, as a function of aerodynamic diameter, the mean probability that particles and droplets will enter the tracheobronchial tree and the alveolar region (fraction which enters the thorax).

3. **Respirable fraction** (R): the curve for this part of the thoracic fraction expresses, as a function of aerodynamic diameter, the mean probability that particles and droplets will enter the alveolar region (fraction which enters the alveolar region).

4. **Extrathoracic fraction**: this fraction is obtained by subtracting the thoracic fraction from the inhalable fraction.

5. **Tracheobronchial fraction**: this fraction is obtained by subtracting the alveolar fraction from the thoracic fraction.

The use of this analytical procedure for hygroscopic particles is justified by the fact that their aerodynamic diameters increase during transport into the respiratory organs as a result of uptake of water and that therefore the sites of deposition and proportion of particles deposited cannot be predicted.

The definitions of the “inhalable fraction” (I) and “respirable fraction” (R) correspond to the definitions of “total dust” (G) and “fine dust” (F) used until 1996 in the establishment of MAK values. Since 1996 the internationally accepted definitions have been used.

---


30) German: “E” for “Einatembare Fraktion”

31) German: “A” for “Alveolengängige Fraktion”

e. Fibrogenic aerosols

As fibrogenic dusts are designated aerosols, including droplet aerosols, which contain insoluble particles which can cause dust lung diseases (e.g. silicosis) involving formation of connective tissue. Prerequisite for the development of such disorders is the deposition of the aerosol in the alveolar region. Therefore the effective levels of fibrogenic aerosols are determined after sampling the respirable fraction (R) (previously “fine dust”, (F)).

f. General threshold limit value for dust

The “general threshold value for dust” is established as a concentration of the respirable fraction (R) of biopersistent granular dusts\(^{15}\) of 0.3 mg/m\(^3\)\(^{34}\) for dusts with a density of 1 g/cm\(^3\) and a concentration of the inhalable fraction (I) of 4 mg/m\(^3\). Excursions above the threshold as described in Section Vg are permitted for the inhalable fraction. The permitted excursions may not exceed the “general threshold value for dust” by a factor of more than two (see Toxikologisch-arbeitsmedizinische Begründungen von MAK-Werten, 25th issue, 1997, in English translation in Occupational Toxicants Volume 12).

Observance of the general threshold value for dust should prevent unspecific effects of dust (e.g. overloading effects) on the respiratory organs. The threshold applies for poorly soluble and insoluble dusts which are not subject to other regulations and for mixtures of dusts even when for individual components of a dust specific MAK values exist and are observed. The threshold value does not apply for soluble particles, especially not for salts from rock salt and potash deposits, or for ultrafine (see Section Vh) or dispersed coarse particle fractions.

Even when the general threshold value for dust is observed, a health hazard may be ruled out only if it has been demonstrated that other substance-specific effects of the dust are not to be expected.

g. Exposures exceeding the MAK value

MAK values for aerosols which are designated with a reference to Section Vg (“Vg”) have been derived from average long-term exposure levels without detectable effects (no observed adverse effect levels, NOAEL).

Impairment of respiratory organ function by these dusts is a result of long-term effects which are determined largely by the aerosol concentration to which the person is exposed over long periods of time. The MAK values correspond to the average long-term exposure levels without detectable effects (NOAEL) but apply to the concentration values averaged over a single shift. As the long-term exposure level is an average of variously high shift average levels, the occasional exceeding of the MAK value by single shift average levels can be tolerated. The permitted frequency and extent of the excursions above the MAK value are established on the basis of occupational medical and toxicological findings (see Toxikologisch-arbeitsmedizinische Begründung von MAK-Werten, 23rd issue, 1996 and

---

\(^{15}\) with the exception of ultrafine particles

\(^{34}\) for dusts with a density of 1 g/cm\(^3\)
in English in Occupational Toxicants Volume 11). In these cases the peak limitation categories do not apply.

For all other aerosols the peak limitation categories must be observed (see Section VI Limitation of exposure peaks).

**h. Ultrafine particles, their aggregates and agglomerates**

Ultrafine primary particles are measured according to their mobility-equivalent diameter ($D_M < 100 \text{ nm}$) (corresponds to a diffusion-equivalent diameter ($D_{ae} < 100 \text{ nm}$)). They can occur as single particles in the workplace air or more often as basic units of aggregates and agglomerates. In these forms they can be seen under an electron microscope.

For the characterization of the potential danger associated with ultrafine primary particles and their aggregates and agglomerates, the following aspects are of significance.

- The particles are formed mostly in combustion processes and gas phase reactions.
- The mechanisms of deposition in the respiratory tract involve the Brownian motion of the particles.
- The effects of the particles in the respiratory tract increase not so much in proportion to the weight as in proportion to the surface area or number of particles per air volume.
- The probability of aggregate or agglomerate formation depends also on the concentration of primary particles in the workplace air.

**Notes:**

Depending on the definition of the threshold value, for **dusts and fumes** either the inhalable fraction “I” or the respirable fraction “R” is determined. For **mists**, the inhalable fraction “I” is determined.

Sampling devices which sample fine dust according to the Johannesburg convention, which used to be used in Germany, fulfil the requirements of DIN/EN 481 for the sampling of respirable dust.

When sampling devices are used which collect fractions for assay according to deposition functions which differ from those described above, the results must be corrected using a correction factor which is dependent on the particle size distribution. The validity of the procedure must be documented.

It must be emphasized that the total dust fraction (G) which used to be determined in Germany and also the inhalable dust fraction (I) used today may not be automatically assumed to be equivalent to “total dust”, a term which is still widely found in the international literature. The term “total dust” does not describe a standardized dimension. Sampling devices which collect “total dust” must be validated.

The fractions PM$_{10}$ and PM$_{2.5}$ collected during sampling of environmental air outdoors are defined by ISO 7708. PM$_{10}$ corresponds to the thoracic fraction (function with 50% deposition at 10 μm) whereas PM$_{2.5}$ is described by a curve with 50% deposition at 2.5 μm. The respirable dust fraction (R) would therefore correspond to PM$_4$.

For the determination of **fibrous dusts**, fractions are not defined according to aerodynamic criteria. Instead the fibre lengths and diameters must be determined microscopically (see Section III Carcinogenic substances, Fibrous dusts).
VI Limitation of exposure peaks

MAK values are conceived and applied as 8-hour time-weighted average values. The actual concentrations of substances in the workplace air are, however, frequently subject to considerable variation. Excursions above the average value must be limited in order to prevent local irritation, unreasonable annoyance and adverse systemic effects.

The effects on health of exceeding the MAK value for brief periods depend decisively on the mode of action of the substance in question. Since the year 2000, substances have been assessed individually and substance-specific excursion factors (ratio of permitted short-term peak value to the MAK value) have been established. For substances in Category I, the MAK value may generally not be exceeded (excursion factor = 1 is the default value) unless the available data permit the establishment of a different excursion factor. For some substances excursion factors >1 have been derived. For substances in Category II, the default value is 2. In this category too, in appropriate cases, other excursion factors have been established. For reasons of analytical practicability, peak values for the substances in these two categories have now been established for a sampling period of 15 minutes. For a discussion of the use of longer sampling periods see “Toxikologisch-arbeitsmedizinische Begründung von MAK-Werten”. The permitted frequency per shift of excursions above the MAK value, the minimum period between individual exposure peaks, and the total permitted duration of excursions above the MAK value are to be seen as a convention. For all substances, however, the 8-hour time-weighted average value must be observed.

This concept takes into account both the toxicological situation and the analytical practicability.

Thus the two categories shown in the table below have been established for the limitation of peak concentrations at the workplace; see also “Spitzenbegrenzung” in “Toxikologisch-arbeitsmedizinische Begründung von MAK-Werten”.

Excursion factors, maximum duration of peaks, maximum number per shift and minimum interval between the peaks

<table>
<thead>
<tr>
<th>Category</th>
<th>Excursion factor</th>
<th>Duration</th>
<th>Number per shift</th>
<th>Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>1*</td>
<td>15 min, average value**</td>
<td>4</td>
<td>1 h</td>
</tr>
<tr>
<td>II</td>
<td>2*</td>
<td>15 min, average value</td>
<td>4</td>
<td>1 h</td>
</tr>
</tbody>
</table>

* default value, or a substance-specific value (maximum 8)
** In certain cases, a momentary value (concentration which should not be exceeded at any time) can also be established.
*** only for excursion factors > 1

In Section IIa of the List of MAK and BAT Values, the Peak limitation category for each substance is listed and in brackets also the appropriate excursion factor. Carcinogenic substances without a MAK value have no entry (~).

A description of analytical methods for monitoring workplaces (Analytische Methoden zur Prüfung gesundheitsschädlicher Arbeitsstoffe – Luftanalysen and in English transf-
VII Percutaneous absorption

At the workplace the absorption of substances through the skin can make a significant contribution to the systemic exposure of the employee or can even be the main exposure route.

The only relevant barrier to absorption of substances at work is the horny layer (stratum corneum) of the skin. The ability of a substance to penetrate this barrier is determined by its physicochemical properties. The rate of dermal penetration is also affected by workplace conditions and by individual factors. Solid, liquid and gaseous substances can be taken up percutaneously. For many substances the skin acts as a depot from which absorption continues even after the end of exposure. Normal working clothes do not generally provide any protection against percutaneous absorption. Quantification of the amount of a substance absorbed through the skin can only be realized by biological monitoring (see Section XI Significance and Use of BAT Values – Surveillance).

Substances are designated with an “H” if through dermal exposure the observance of the MAK value on its own no longer guarantees the prevention of important adverse effects on health which were considered for establishment of the threshold value. In addition to systemic effects these can also include the sensitization of the respiratory tract if it has been demonstrated to be induced by skin contact. Substances are not designated with an “H” if toxic effects are not to be expected under workplace conditions, independent of the ability of the substance to penetrate the skin. It may not be assumed that the absence of a designation with “H” means that wearing inhalation protection is sufficient to adequately protect an employee from the substance if the MAK value can not be observed. Under these conditions, considerable absorption from the gas phase was detected, especially for amphiphilic substances. Substances in section II b are dealt with in analogy to substances with MAK values and designated with “H” when a toxicologically relevant uptake can be assumed and one of the criteria for designation is fulfilled. Carcinogenic substances in Categories 1 and 2 and suspected carcinogens without a MAK value in Category 3 are designated with an “H” whenever it appears that dermal absorption can make a significant contribution to a person’s body burden. For an assessment of the measures necessary for adequate occupational hygiene, the reader is referred to the documentation for the substance in question.

A substance is designated with an “H” when one of the criteria listed below is fulfilled.

1. Designation with “H” on the basis of workplace studies

Field studies or scientifically documented casuistics demonstrate that percutaneous absorption is significant in practice in persons handling the substance:

The percutaneous absorption is certainly responsible for part of the systemic dose and can contribute to toxic effects.

2. Designation with “H” on the basis of animal studies
Percutaneous absorption can be demonstrated in animal studies and the exposure can contribute to toxic effects.

3. Designation with “H” on the basis of in vitro studies
A relevant level of percutaneous absorption which can contribute to toxic effects has been quantified with recognized methods. The flux through the skin has been determined and the permeability constant has been or may be calculated, or details of percentage absorption of the applied dose (percentage absorbed per unit of time and skin surface area) are available.

4. Designation with “H” on the basis of theoretical models
On the basis of data for analogous substances or calculations with mathematical models, a relevant level of percutaneous absorption may be expected.

The criteria 1 to 4 are arranged in order of decreasing significance; data obtained with exposed persons are most important. The quantitative criteria are described in detail in “Kriterien für die Vergabe der “H“-Markierung” in Toxikologisch-arbeitsmedizinische Begründung von MAK-Werten.\(^{38}\)
The designation “H” is shown in the List of MAK and BAT Values and does not indicate that the substance can cause skin irritation.

VIII MAK values and pregnancy

Observance of the MAK values and BAT values does not guarantee, in every case, that the unborn child is reliably protected because numerous substances have not yet been investigated or have been only partially tested for prenatal toxicity.

Definition
The expression “prenatal toxicity” or developmental toxicity is taken in its broadest sense by the Commission; it includes any effect of the substance which elicits an alteration from the physiological norm in the development of the organism and leads to prenatal or postnatal death of the offspring or to permanent morphological or functional damage.

Effects in humans
Epidemiological studies that yield evidence of toxic effects of substances on the human embryo or foetus are of particular importance for the assessment. Because of the limitations of such studies, e.g. inadequate methods, low statistical power, exposures to mixtures of substances, personal factors and life styles, a clear statement as to substance-specific effects and effect thresholds is usually not possible.

Animal Studies
The evaluation of the developmental toxicity of substances is based mainly on animal studies. Studies which have been carried out according to internationally recognized test-
ing guidelines such as OECD or similar test guidelines (e.g. EU, Japan) play a decisive role. The OECD Test Guideline 414 in particular is appropriate for the determination of prenatal toxicity. Testing for perinatal and postnatal toxicity, to a limited extent also for prenatal toxicity, is carried out in one-generation studies according to OECD Test Guideline 415, in two-generation studies according to OECD Test Guideline 416 or in screening tests according to OECD Test Guidelines 421 and 422. If studies are available that were not conducted according to these guidelines, their validity is to be determined individually. The most important criteria are a sufficiently large number of animals, the use of different dose groups with derivation of a NOAEL (no observed adverse effect level), in-depth studies (external, skeletal and visceral examinations of the foetuses in the developmental toxicity studies) and adequate documentation of the results.

Inhalation studies are of particular importance in assessment of the prenatal toxicity of substances present at the workplace. Also studies with oral administration or dermal application can be taken into consideration if the available data do not present evidence against extrapolation to inhalative administration (e.g. by a pronounced “first pass” effect). Studies carried out with routes of administration which are not relevant in humans (e.g. intraperitoneal) are not included in the evaluation as a rule.

Studies with an oral route of administration usually reach higher doses than those with inhalative or dermal application. For this reason, effects are also reported which occur only in the high dose range. Therefore, the test guidelines mentioned consider 1000 mg/kg body weight to be the maximum dose to be tested (limit dose). Such high dose effects are mostly irrelevant for assessing prenatal toxicity at concentrations near the MAK value. Prenatal toxic effects which are observed in the presence of marked maternal toxicity are of low relevance for the situation at the workplace as they are prevented by observance of the MAK value. Findings at doses or concentrations at which no or only slight maternal toxicity is observed are of particular relevance.

The preferred animal species usually recommended in the test guidelines for prenatal developmental toxicity (OECD 414) are female rats and rabbits. The generation studies (e.g. OECD 415 and 416) including the screening tests (e.g. OECD 421 and 422) are usually carried out only with rats of both sexes.

To consider the factor of uncertainty in assessing animal studies, the margin between the NOAEL for developmental toxicity in animal studies and the resulting exposure level or body burden if the MAK or BAT value is observed must be adequate. The necessary margin depends on a number of very different factors:

- comparative toxicokinetic data for humans and animals
- toxicokinetic data for a substance in the dams and embryos or foetuses to evaluate differences in level of exposure between maternal and foetal organs/tissues
- If such data are not available, the evaluation of specific substance properties such as molecular size, lipid solubility and protein binding plays an important role; such data determine the transplacental transfer of the substance from the mother animal and the internal exposure of the embryos or foetuses.
- The kind and severity of the results observed are important factors. Serious effects such as the increased occurrence of specific malformations at doses not causing simultaneous maternal toxicity should receive more emphasis than rather unspecific or less severe foetotoxic effects such as slightly decreased foetal body weight or delayed skeletal maturation.
Thus, determination of an adequate margin is a substance-specific process which will result in documentations based on different justifications.

**Pregnancy risk groups**

Based on the criteria mentioned, the Commission is evaluating substances with MAK or BAT values as to whether prenatal toxic effects are unlikely when the MAK value or the BAT value is observed (Group C), whether, according to the currently available information, such effects cannot be excluded (Group B) or whether they have been unequivocally demonstrated (Group A). For a number of substances, however, it is not yet possible to make a statement as to prenatal toxicity (Group D).

The following pregnancy risk groups are defined:

**Group A:** Damage to the embryo or foetus in humans has been unequivocally demonstrated and is to be expected even when MAK and BAT values are observed.

**Group B:** According to currently available information damage to the embryo or foetus cannot be excluded after exposure to concentrations at the level of the MAK and BAT values. The documentation indicates, when the Commission’s assessment of the data makes it possible, which concentration would correspond to the classification in Pregnancy Risk Group C. Substances with this indication have the footnote “prerequisite for Group C, see documentation”.

**Group C:** Damage to the embryo or foetus is unlikely when the MAK value or the BAT value is observed.

**Group D:** Either there are no data for an assessment of damage to the embryo or foetus or the currently available data are not sufficient for classification in one of the groups A – C. Substances without a MAK or BAT value (carcinogenic substances or substances included in Section IIb) have no entry (−).

**IX Germ cell mutagens**

Germ cell mutagens produce heritable gene mutations and heritable structural and numerical chromosome aberrations in germ cells. The consequences of germ cell mutations in subsequent generations include genetically determined phenotypic alterations without signs of illness, reduction in fertility, embryonic or perinatal death, more or less severe congenital malformations, and genetic diseases with various degrees of health impairment. The term “germ cell mutagenicity” refers specifically to mutagenicity in male and female germ cells and is distinguished from mutagenicity in somatic cells which can initiate cancer.

Epidemiological studies, however, have been unable to provide any evidence as yet that exposure to chemicals or to radiation results in hereditary diseases in man. Although structural changes have been demonstrated in the chromosomes of the germ cells of men exposed to radiation, even this finding can only provide indirect evidence that such exposures could lead to hereditary disorders in the offspring. The proof that an increased frequency of hereditary diseases is related to a particular exposure would be associated with great methodological difficulties. In the human population there are a large number of hereditary diseases of unknown origin with frequencies which differ widely in different subpopulations. Since mutational events occur largely randomly in the genome, it is not to be expected that one particular substance would induce one characteristic genetic disease.
Therefore, it is most unlikely that proof of a causal relationship between exposure to a chemical and occurrence of heritable diseases will become available in the foreseeable future.

In this situation, for the identification of germ cell mutagens the results of animal experiments must be given particular attention. The mutagenic effect of chemicals on the germ cells of exposed parent animals can be demonstrated by observing an increased mutant frequency among the progeny. In addition, the demonstration of genotoxic effects of a substance in germ cells or somatic cells provides evidence of a potential hazard for subsequent generations.

The categories for classification of germ cell mutagens have been established in analogy to the categories for carcinogenic chemicals at the workplace.

1. Germ cell mutagens which have been shown to increase the mutant frequency in the progeny of exposed humans
2. Germ cell mutagens which have been shown to increase the mutant frequency in the progeny of exposed mammals
3 A. Substances which have been shown to induce genetic damage in germ cells of humans or animals, or which produce mutagenic effects in somatic cells of mammals in vivo and have been shown to reach the germ cells in an active form
3 B. Substances which are suspected of being germ cell mutagens because of their genotoxic effects in mammalian somatic cells in vivo; in exceptional cases, substances for which there are no in vivo data but which are clearly mutagenic in vitro and structurally related to known in vivo mutagens
4. not applicable (*)
5. Germ cell mutagens or suspected substances (according to the definition of Category 3 A and 3 B), the potency of which is considered to be so low that, provided the MAK and BAT values are observed, their contribution to genetic risk for man is considered to be very slight

(*) Category 4 carcinogenic substances are those with non-genotoxic mechanisms of action. By definition, germ cell mutagens are genotoxic. Therefore, a Category 4 for germ cell mutagens cannot apply. At some time in the future it is conceivable that a Category 4 could be established for genotoxic substances with primary targets other than the DNA (e.g. purely aneugenic substances) if research results make this seem sensible.

X Substances requiring special consideration

a. Organic peroxides

The inflammatory and caustic effects of organic peroxides on the skin and mucous membranes vary considerably. For some of these compounds, even very small amounts of very dilute solutions produce severe necrosis of the skin or the cornea, resulting in loss of eyesight. Inhalation of the vapours causes various degrees of irritation in the respiratory passages. In practice, the danger of systemic effects is low. Sensitizations of the immediate type have been observed after inhalation of these substances. With hydroperoxides and with certain peroxides contact sensitization may be expected as well.
A number of organic peroxides have produced mutagenic effects in *in vitro* tests. In addition, tumours have been produced in animal experiments with, e.g., diacetyl peroxide, *tert*-butyl peroxide, dilauroyl peroxide and *α*,*α*-*dimethylbenzyl hydroperoxide.

<table>
<thead>
<tr>
<th>Negligible or very weak effects on skin</th>
<th>Di-<em>tert</em>-butyl peroxide</th>
<th>(50%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Dibenzoyl peroxide</td>
<td>(50%)</td>
</tr>
<tr>
<td></td>
<td>Dilauroyl peroxide</td>
<td></td>
</tr>
<tr>
<td>Moderate effects on skin:</td>
<td><em>tert</em>-Butyl hydroperoxide</td>
<td>(50%)</td>
</tr>
<tr>
<td></td>
<td><em>tert</em>-Butyl peracetate</td>
<td></td>
</tr>
<tr>
<td></td>
<td><em>α</em>,<em>α</em>-*dimethylbenzyl hydroperoxide</td>
<td>(Cumene hydroperoxide)</td>
</tr>
<tr>
<td></td>
<td>Methyl ethyl ketone peroxide</td>
<td>(40%)</td>
</tr>
<tr>
<td></td>
<td>(2-Butanone peroxide)</td>
<td></td>
</tr>
<tr>
<td>Very severe effects on skin:</td>
<td>Cyclohexanone peroxide mixtures</td>
<td>(50%)</td>
</tr>
<tr>
<td></td>
<td>Dicyclohexyl peroxide</td>
<td>(50%)</td>
</tr>
<tr>
<td></td>
<td>Diacetyl peroxide</td>
<td>(30%)</td>
</tr>
<tr>
<td></td>
<td>Peroxyacetic acid</td>
<td>(40%)</td>
</tr>
</tbody>
</table>

**b. Gasolines**

The Commission could not agree to assign a MAK value to “gasolines” because this term describes a number of very different mixtures such as motor gasolines (petrol), special boiling point gasolines, white spirits and pyrolysis gasolines. The toxicity of gasolines depends primarily on their content of aromatic compounds (benzene, toluene, xylenes, ethyl benzene, cumene), which varies markedly with the production method.

Procedures suggested for establishing MAK values by the mathematical evaluation of the composition of such mixtures of liquid solvents must be rejected on principle because such calculations cannot provide information as to the actual concentrations in the workplace air. Only when results are available from studies with defined gasoline-vapour mixtures (see Section I) can the Commission make any concrete statements.

Levels of additives such as 1,2-dibromoethane and 1,2-dichloroethane must be evaluated independently (see these listings).

**c. Metal-working fluids, hydraulic fluids and other lubricants**

**Definition**

Lubricants are lubricating media based on mineral oils, natural oils or synthetic liquids. Lubricants in liquid form are to be viewed like metal-working fluids (DIN 51385) and lubricating greases of varying consistencies (DIN 51825). Hydraulic fluids are also included (DIN 51524), which are used for power transmission in hydrostatic/hydrodynamic systems and at the same time may enter the metal-working process, for example due to contamination.

When lubricants are defined according to type or field of application, automotive lubricants (motor oils, transmission oils) are differentiated from industrial lubricants, such as metal-working fluids and hydraulic fluids.

Chemically, lubricants are a heterogeneous group and have a complex composition. Metal-working fluids contain various substances which are also found in other lubricants. Therefore the substances which before 2013 had been listed separately in the List of MAK and BAT Values and in “Toxikologisch-arbeitsmedizinische Begründungen von MAK-
Metal-working fluids are now combined. Hydraulic fluids have numerous components in common with both groups and are therefore also discussed here.

Metal-working fluids

Metal-working fluids are used to cool metallic workpieces and to increase the quality and speed of the cutting process (for example, turning, drilling, milling and cutting) and the service life of the tools.

During the shaping treatment and processing of workpieces (includes rolling and forming, for example), the fluids decrease friction and protect surfaces. They are subdivided into non-water miscible (earlier synonyms: honing oils, cutting oils, grinding oils and rolling oils) and water-miscible metal-working fluids. When used diluted with water, they are called water-mixed metal-working fluids, in practice also drilling fluid or emulsion and grinding water.

The modern non-water miscible metal-working fluids are generally multicomponent mixtures whose composition may vary considerably according to the intended use. They consist predominantly of base oils. These are either mineral oils (natural hydrocarbons, paraffinic or naphthenic), natural oils (such as rapeseed oils) or chemically synthesized oils such as synthetic ester oils (e.g. trimethyl propane esters and polyglycol ethers). Important technically desirable properties, such as load-carrying capacity, adjustment of the viscosity index and pour point are only achieved by including additives.

Essential additives are used for protection against wear, corrosion and ageing, as defoamers and as antimist additives and may also be surface-active substances (surfactants). Antioxidants prevent the degradation of lubricants, for example, while metal deactivators inhibit the catalytic activity and corrosion of non-ferrous metals.

Water-miscible metal-working fluids, which are typically used as water-mixed metal-working fluids at concentrations of 1–20%, also contain additives such as emulsifiers, solubilisers, odour maskers and dyes. Biocides are used for the control of bacteria (preservation) in aqueous systems. As part of inspection/maintenance/care of water-mixed metal-working fluids, individual components may be added which do not always correspond to the original formulation of the manufacturer. For example, if there is increased bacterial growth, biocides might be added. Therefore, the composition may constantly vary in the course of time or during prolonged service lives.

The toxicological assessment of metal-working fluids is dependent on their composition and properties of their components, which differ greatly in number and proportion according to the intended use. The mineral oil component alone is therefore not representative of the potential effect. As a result, the MAK value of 5 mg/m³ previously established for pure mineral oil is not applicable to present-day metal-working fluids since these are generally mixtures whose composition may vary considerably according to the intended use. For this reason, it is not possible to establish a single MAK value for all types of metal-working fluids. It is a substantial disadvantage that there is no regulation requiring declaration of components of metal-working fluids. Therefore, it is virtually impossible to make a systematic evaluation. New components and compositions are to be expected with advancing technology. Disclosure of the composition is an absolute requirement for an adequate assessment by the Commission.

Hydraulic fluids and other lubricants such as greases

Hydraulic fluids are operating liquids for hydrostatic/hydrodynamic power transmissions. They consist mainly of oils such as mineral oils, natural oils or synthetic fluids of varying structure and viscosity with additives (DIN 51524). The use of hydraulic fluids and other lubricants such as greases may involve intensive skin contact. Skin contact with components of hydraulic fluids results mainly when they are added to water-mixed metal-working fluids during metal working.

There are numerous applications for which liquid lubricants are not suitable (for example, plain and rolling bearings in machine tools). In these cases, greases covering a wide range of viscosity are used. From a physical point of view, greases are colloidal suspensions of thickeners in oils. Mainly metal soaps are used as thickeners, but also mineral substances and polymers.

Hazards

Following skin contact, the effects on health expected most frequently are sensitizing and irritant effects on the skin in the sense of toxic irritant reactions or type IV sensitization (see Section IV “Sensitizing substances” and TRGS 401). Systemic toxicity as a result of skin absorption is, however, of minor importance.

When metal-working fluids are in use, it is possible for vapours resulting from high temperatures at the cutting edge and aerosols due to high rotation speeds to pass into the workplace atmosphere. To date, hardly any animal studies or epidemiological data are available for long-term effects following uptake in the lungs under working conditions. However, the toxic profiles of individual components which are absorbed in the lungs or dermally suggest evidence of a systemic toxic reaction. There may be irritant or toxic reactions in the respiratory tract and lungs following inhalation. It can be assumed that systemic toxicity and local effects on the skin and respiratory tract are mainly due to the additives.

Carcinogenic nitrosamines resulting from nitrosatable secondary amines such as diethanolamine and morpholine (see Section III “Amines which form carcinogenic nitrosamines on nitrosation”; see TRGS 552 and 611), may be of potential toxicological relevance in water-mixed metal-working fluids, particularly if the fluids contain no inhibitors against their formation.

Both the nitrite concentration and the pH of the water-mixed metal-working fluid have substantial influence on formation of nitrosamines and the rate of their formation. Bacterial nitrite formation can be avoided by the addition of biocides.

Since the nitrosamine concentration does not always correlate with the nitrite concentration, it is more reliable to determine nitrosamine rather than nitrite levels in metal-working fluids containing secondary amines (these do not comply with TRGS 611, unless the provision in Paragraph 2.4 applies). In particular, the absence of nitrite at a particular sampling time does not rule out the possibility that nitrosamines are present. The use of

---


non-water miscible metal-working fluids leads to the formation of polycyclic aromatic hydrocarbons (PAH; reference substance: benzo[a]pyrene). They form at non-critical concentrations if their mineral base oils are sufficiently refined or hydrogenated. According to TRGS 905\(^{43}\), the mass content of benzo[a]pyrene in the base oils of non-water miscible metal-working fluids should be lower than 0.005\% (50 ppm).

For systemically hardly toxic components of metal-working fluids which were assessed as non-irritating to mucous membranes and for which no MAK value can be established, it is pointed out that no adverse effects on health are expected at a concentration of up to 10 mg metal-working fluid/m\(^3\), which corresponds to the technical exposure limit of the German BGR/GUV-R 143, 2011.\(^{44}\)

The Commission prepares toxicological/occupational-medical reviews of individual components with the aim of publishing practicable assessments in the form of MAK values, if possible. The list, which is subject to constant revision, should assist in the assessment of the effects of metal-working fluids, hydraulic fluids and other lubricants on a case by case basis and in taking any necessary action for health protection.

Documentation has been published for the following substances:

Abietic acid [514-10-3]  
also includes disproportionation and transposition products.

Adipic acid [124-04-9]

Alkyl amines, C11–14-branched, monohexyl and dihexyl phosphates [80939-62-4]

Alkyl benzenesulfonates C10-C14, linear [69669-44-9; 85117-50-6]

Alkyl ether carboxylic acids

1-(2-Allyloxy)-2-(2,4-dichlorophenyl)ethyl)-1H-imidazole [35554-44-0]

1-Aminobutanol [96-20-8]

2-(2-Aminoethoxy)ethanol [929-06-6]

2-Amino-2-ethyl-1,3-propanediol [115-70-8]

2-Amino-2-methyl-1-propanol [124-68-5]

1-Amino-2-propanol [78-96-6]

N-(3-Aminopropyl)-N-dodecylpropane-1,3-diamine [2372-82-9]

Aminotris(methyleneephosphonic acid) [6419-19-8] and its sodium salts

Azelaic acid [123-99-9]

Behenic acid [112-85-6]

1,2-Benzisothiazol-3(2H)-one [2634-33-5]

Benzoic acid [65-85-0] see also Benzoic acid alkali salts  
Causes pseudoallergic reactions, see Toxikologisch-arbeitsmedizinische Begründung von MAK-Werten (21st issue 1995).

1H-Benzotriazole [95-14-7]

Benzylic alcohol [100-51-6]

Benzylic alcohol mono(poly)hemiformal [14548-60-8]  
releases formaldehyde

N,N-Bis(2-ethylhexyl)-(1,2,4-triazole-1-yl)methanamine [91273-04-0]

1,3-Bis(hydroxyethyl)urea [140-95-4]  
releases formaldehyde

Bithionol [97-18-7]


Boric acid [10043-35-3] and tetraborates

2-Bromo-2-nitro-1,3-propanediol [52-51-7]
use forbidden as component of metal-working fluids and corrosion inhibitors: see "GefStoffV 2010, Anhang II (zu §16 Absatz 2), Nr. 4"

★ 2-Butyl-1,2-benzothiazolin-3-one [4299-07-4]
4-tert-Butylbenzoic acid [98-73-7]
tert-Butyl-4-hydroxyanisole (BHA) [25013-16-5]
Calcium bis(dinonylnaphthalenesulphonate) [57855-77-3]
Calcium hydroxide [1305-62-0]
5(or 6)-Carboxy-4-hexylcyclohex-2-ene-1-octanoic acid [53980-88-4]
2-Chloroacetamide [79-07-2]
Chloroacetamide-N-methylol (CAM) [2832-19-1]
releases formaldehyde
p-Chloro-m-cresol [59-50-7]
5-Chloro-2-methyl-2,3-dihydroisothiazol-3-one and 2-Methyl-2,3-dihydroisothiazol-3-one [26172-55-4; 2682-20-4] mixture in ratio 3:1
Chlorothalonil [1897-45-6]
Citric acid [77-92-9]
Citric acid alkali metal salts
Coconut oil [8001-31-8]
Cyclohexylhydroxydiazene-1-oxide, potassium salt [66603-10-9]
N-Cyclohexylhydroxy-diazen-1-oxide, copper salt [15627-09-5]
Decyl alcohol [112-30-1]
n-Decyl oleate [3687-46-5]
Dibenzyl disulfide [150-60-7]
2,2-Dibromo-2-cyanacetamide [10222-01-2]
1,2-Dibromo-2,4-dicyanobutane [35691-65-7]
2,6-Di-tert-butyl-p-cresol (3,5-Di-tert-butyl-4-hydroxytoluene) (BHT) [128-37-0]
3-(3,5-Di-tert-butyl-4-hydroxyphenyl)-N’-[3-(3,5-di-tert-butyl-4-hydroxyphenyl)propanoyl]propanehydrazide [32687-78-8]
3,5-Di-tert-butyl-4-hydroxyphenyl propionic acid octadecyl ester [2082-79-3]
2,6-Di-tert-butylphenol [128-39-2]
Di-n-butyl phosphate [107-66-4] and its technical mixtures
Di-n-butyl phosphonate [1809-19-4] see also Di-n-octyl phosphonate
Di-n-butyl phthalate [84-74-2]
Di(tert-dodecyl)pentasulfide and Di(tert-dodecyl)polysulfide [31565-23-8; 68583-56-2; 68425-15-0]
Diethylenetriaminepenta(methylene phosphonic acid) [15827-60-8] and its sodium salts [22042-96-2]
1,2-Dihydro-2,2,4-trimethyl-quinoline polymer [26780-96-1]
4-(Diodomethylsulfonyl)-toluene [20018-09-1]
Diisodecyl phthalate [26761-40-0]
Diisotridecyl phthalate [27253-26-5]
1,3-Dimethylol-5,5-dimethyl hydantoin [6440-58-0]
4,4’-Dioctyldiphenylamine [101-67-7]
Di-n-octyl phosphonate [1809-14-9] see also Di-n-butyl phosphonate
Diphenylamine [122-39-4]
Diphenylamine, octylated (Benzenamine, N-phenyl-, reaction products with 2,4,4-trimethylpentene) [68411-46-1]
Diphenylamine, reaction products with styrene and 2,4,4-trimethylpentene [68921-45-9]
Dipropylene glycol [25265-71-8]
Distillates (petroleum) [64742-47-8] hydrotreated light (aerosol)
Distillates (petroleum) [64742-47-8] hydrotreated light (vapour)
2,2′-Dithiobis(N-methylbenzamide) [2527-58-4]
Ditridecyl phthalate [119-06-2]
Dodecanedioic acid [693-23-2]
1-Dodecanol [112-53-8]
5-Ethyl-3,7-dioxa-1-azabicyclo[3.3.0]octane (EDAO) [7747-35-5] releases formaldehyde
2-Ethyl-1,3-hexanediol [94-96-2]
Glycerol [56-81-5]
1-Hexadecanol [36653-82-4]
Hexamethylene bis(3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionate) [35074-77-2]
Hexamethylenetetramine [100-97-0] releases formaldehyde
1-Hexanol [111-27-3]
2-Hexyl-1-decanol [2425-77-6]
Hexylene glycol [107-41-5]
1-Hydroxyethyl-2-heptadecenyl-imidazoline [21652-27-7]
1-Hydroxyethylidene-1,1-diphosphonic acid [2809-21-4] and its sodium and potassium salts
2-Hydroxymethyl-2-nitro-1,3-propanediol [126-11-4] use forbidden as component of metal-working fluids and corrosion inhibitors: see “GefStoffV 2010, Anhang II (zu §16 Absatz 2), Nr. 4”
12-Hydroxystearic acid [106-14-9]
3-Iodo-2-propynyl butylcarbamate [55406-53-6]
Isodecyl oleate [59231-34-4]
Isononanoic acid [3302-10-1] [26896-18-4]
Isooctadecanol [27458-93-1]
Isotridecanol [27458-92-0]
Kerosine (petroleum) (aerosol) [8008-20-6]
Kerosine (petroleum) (vapour) [8008-20-6]
Lauric acid [143-07-7]
Lithium-12-hydroxystearate [7620-77-1]
Lithium stearate [4485-12-5]
2-Mercaptobenzothiazole [149-30-4]
Methenamine 3-chloroallyl chloride [4080-31-3] releases formaldehyde
Methyl-1H-benzotriazole [29385-43-1]
Methyldiethanolamine [105-59-9]
4-Methyl-1,3-dioxolan-2-one [108-32-7]
Methylene bis(dibutylidithiocarbamate) [10254-57-6] (inhalable fraction)
Methylene bis(dibutylidithiocarbamate) [10254-57-6] (respirable fraction)
4,4′-Methylene-bis(2,6-di-tert-butylphenol) [118-82-1]
N,N′-Methylene-bis(5-methyloxazolidine) [66204-44-2]
4,4'-Methylenedimorpholine [5625-90-1] releases formaldehyde.

2-Methyl-4-isothiazolin-3-one [2682-20-4]

Myricic acid [544-63-8]

Naphtha (petroleum) hydrotreated, heavy [64742-48-9]

Naphthenic acids and sodium, calcium, potassium napthenates [1338-24-5; 61790-13-4; 61789-36-4; 66072-08-0] (technical mixtures)

3-Nitrobenzoic acid [121-92-6]

4-(2-Nitrobutyl)morpholine (70 % w/w) and 4,4'-((2-Ethyl-2-nitro-1,3-propandiyl)bis-morpholin) (20 % w/w) [2224-44-4; 1854-23-5] (mixture)

In this mixture formaldehyde can be released and nitrosamines formed. Use forbidden as component of metal-working fluids and corrosion inhibitors: see “GefStoffV 2010, Anhang II (zu §16 Absatz 2), Nr. 4”.

(4-Nonylphenoxy)acetic acid [3115-49-9]

1-Octadecanol [112-92-5]

1-Octanol [111-87-5]

2-Octyl-1-dodecanol [5333-42-6]

2-Octyl-4-isothiazolin-3-one [26530-20-1]

4-tert-Octylphenol [112-80-1]

Oleic acid [112-80-1]

Oleic alcohol [143-28-2]

Oleyl sarcosine [110-25-8]

Palmitic acid [57-10-3]

Petroleum sulfonates, calcium salts (technical mixture in mineral oil) [61789-86-4]

Petroleum sulfonates, sodium salts [68608-26-4]

Phenothiazine [92-84-2]

Phototoxic effect.

2-Phenoxyethanol [122-99-6]

1-Phenoxy-2-propanol [770-35-4]

2-Phenyl-1-ethanol [60-12-8]

N-Phenyl-1-naphthylamine [90-30-2]

o-Phenylphenol [90-43-7] see also Sodium o-phenylphenol

Piperazine [110-85-0]

Use in metal-working fluids is not permitted: see TRGS 611. Reaction with nitrosating agents can result in the formation of carcinogenic N,N'-dinitrosopiperazine, see Section III “Amines which form carcinogenic nitrosamines on nitrosation”.

Polyalphaolefins, several CAS Nos, e.g. [68649-11-6]

Polybutenes and Polyisobutenes

Polyisobutenes [9003-27-4]

Polydimethyl siloxanes, linear [63148-62-9; 9006-65-9; 9016-00-6]

Polyethylene glycol (average molecular weight 200–600) [25322-68-3]

Because formation of a mist is possible, exposure should be minimized for reasons of occupational safety and hygiene.

Polyethylene glycol (average molecular weight > 600) [25322-68-3]

Polyethyleneoxidepropylene glycol [9003-11-6]

Polyoxyethylene oleyl ether [9004-98-2]

Polypropylene glycol (PPG) [25322-69-4]

Poly(propylene glycol) n-butyl ether [9003-13-8]

Polytetrafluoroethene [9002-84-0] (inhaleable fraction)

Polytetrafluoroethene [9002-84-0] (respirable fraction)

except for ultrafine particles; see section Vh

Propylene glycol [57-55-6]
d. Metals and metal compounds

In the List of MAK and BAT Values, metals are listed as the element “and its inorganic compounds”; the threshold value is then expressed consistently in terms of the metal content. For the individual compounds of most metals, the data available from animal studies or from known effects on man are insufficient for evaluation. Whenever analogy of various compounds of a metal and the element itself seems plausible, these substances should be put in a single category. Therefore, it is necessary that the individual metal compounds be specified as exactly as possible. Generally organic metal compounds should be evaluated separately from the inorganic compounds with respect to the establishment of a MAK value and of carcinogenic potential.

And since the type and extent of metal-related damage depends markedly on the nature of the chemical bond, differences in water solubility of metal compounds can influence their acute and chronic toxicity. On principle, therefore, every metal compound should be
tested individually and then categorized according to its toxicity and any carcinogenic potential. At present, sufficient data for such a classification is available for only a few metal compounds.

e. Radioactive materials

For procedures in handling radionuclides, reference is made to the special regulations of the “Strahlenschutzverordnung” (radiation protection guidelines). The current version of the guideline may be found in the relevant issue of the Bundesgesetzblatt.
Assessment Values in Biological Material

XI Significance and use of BAT values and BLW

Definition

The Commission establishes BAT values (“Biologische Arbeitsstoff-Toleranzwerte”: biological tolerance values) and BLW (“Biologische Leit-Werte”) to enable the evaluation of the risk to an individual’s health which results from exposure to a substance at the workplace.

The BAT value describes the occupational-medical and toxicological derived concentration for a substance, its metabolites or an effect parameter in the corresponding biological material at which the health of an employee generally is not adversely affected even when the person is repeatedly exposed during long periods. BAT values are based on a relationship between external and systemic exposure or between the systemic exposure and the resulting effect of the substance. The derivation of the BAT value is based on the average of systemic exposures.

The BAT value is exceeded when, following several individual examinations, the average concentration of the parameter is greater than the BAT value; measured values greater than the BAT value must be evaluated in relation to occupational-medical and toxicological data. Adverse effects on health can not necessarily be deduced from one single excursion above the BAT value. This is not valid for acute toxicity, which must not be permitted at any time. The individual evaluations of substances include evidence of acute toxic effects. In addition, substances with a BAT value which targets an acute toxic effect are marked with an appropriate footnote in the List of MAK and BAT Values (“derivation of the BAT value as ceiling value because of acute toxic effects”).

BLW are derived for carcinogenic substances and for substances without sufficient data: these are likewise established as averages (see section XIV).

Prerequisites

By definition, BAT values can be established only for such substances which can be taken up by the body in substantial quantities via the lungs and/or other body surfaces (skin, gastrointestinal tract) during occupational exposure. Another prerequisite for the establishment of a BAT value is that sufficient occupational-medical and toxicological data are available for the substance and that these data are supported by observations in man. The data must have been obtained with reliable methods. For the establishment of new BAT values and the annual review of the list, the submission of suggestions and reports of experience with such substances in man is requested.

Derivation of BAT values

The derivation of a BAT value can be based on various constellations of scientific data which reveal a quantitative relationship between exposure concentration and body burden and therefore permit the linking of MAK and BAT values. These include
studies which reveal a direct relationship between concentrations of a substance, metabolite or adduct in biological material (body burden) and adverse effects on health.

studies which reveal a relationship between a biological indicator (effect parameter) and adverse effects on health.

The following considerations of sex-specific factors apply for the establishment of BAT-values:

1. The range of the variation in human anatomical and physiological differences which affect the toxicokinetics of a substance is very wide even for a single sex; the ranges for the two sexes overlap.

2. The resulting sex-specific differences in toxicokinetics vary in a range which is insignificant compared with the uncertainty involved in establishing threshold values.

3. Pregnancy can be associated with certain changes in the toxicokinetics of xenobiotics. In practice, however, the effects of these changes are limited so that for health protection at the workplace it is the effects on the embryo and foetus which are of particular importance (see Section VIII “MAK values and pregnancy”).

Documentation

The reasons why a BAT value was established at a particular level are documented by the Permanent Senate Commission for the Investigation of Health Hazards of Chemical Compounds in the Work Area in a loose-leaf collection entitled “Biologische Arbeitsstoff-Toleranzwerte (BAT-Werte), Expositionsäquivalente für krebs erzeugende Arbeitsstoffe (EKA), Biologische Leitwerte (BLW) und Biologische Arbeitsstoff-Referenzwerte (BAR) – Arbeitsmedizinisch-toxikologische Begründungen”.45 They combine a critical review of the available data with comments on the values for the parameters which have been shown in practice to make a useful contribution to occupational hygiene.

As a rule, the Commission makes its decisions only on the basis of data which have been published in the scientific literature. When necessary, other sources such as unpublished internal company reports are cited and are then identified as such in the reference list at the end of the documentation. The unabridged reports are made available to the Commission and are filed at the Commission’s scientific central office. Information required by a third party about the company reports cited in the Commission’s documentation is supplied in writing by the chairman of the Commission at his discretion. Access to company reports is not made available to third parties. Copies, even of parts of reports, are not provided.

Purpose

In the context of specific occupational-medical check-ups, BAT values are intended to protect employees from impairment of health at work. They provide a basis for deciding whether the amount of a chemical substance taken up by the organism may be harmful or not. For substances that can be absorbed through the skin, individual exposures can be determined only by biological monitoring. BAT values are not suitable for the derivation

of biological threshold values for long-term non-occupational exposures such as from air pollution or contaminants in food by means of fixed conversion factors.

**Correlations between BAT and MAK values**

When a substance is inhaled under steady state conditions in controlled laboratory experiments, the relationship between the BAT and MAK values can be expressed in terms of pharmacokinetic functions. Under workplace conditions, however, it is not necessarily possible to deduce the level of a substance to which a particular person was exposed from its specific biological parameter in that person because a series of other factors in addition to the amount of the substance in the air can determine the extent of exposure of the organism. These factors include the level of physical activity (respiratory minute volume), absorption through the skin and individual variations in metabolic or excretory patterns. It is therefore particularly difficult to evaluate field studies which describe the relationship between internal and external exposure to substances which can be absorbed percutaneously. Experience has shown that studies of such substances frequently yield discrepant results. These discrepancies are attributed to different levels of dermal exposure under the different study conditions. When evaluating such results to determine relationships between MAK and BAT values, priority should be given to studies in which the data suggest that skin absorption played a minor role.

In general, for substances with low vapour pressure which are readily absorbed through the skin, there is no correlation between exposure concentration and body burden. For these substances a BAT value can often be established only on the basis of a relationship between body burden and effect.

In addition, the concentrations of substances in the workplace air may vary with time and the biological parameters may not vary to the same extent. Therefore, observance of BAT values does not make it unnecessary to monitor the concentrations of substances in the workplace air. This applies especially for local irritants and caustic substances. When evaluating macromolecular adducts of foreign substances it should be borne in mind that the persistence of such adducts can lead to discrepancies between the pattern of external exposure and the behaviour of the biological parameters. Similar considerations apply for all highly cumulative substances such as heavy metals and polyhalogenated hydrocarbons.

In spite of all these interfering factors and the consequent differences in the definitions of MAK and BAT values, the two thresholds are generally based on equivalent effects of substances on the organism. However, for substances for which the MAK value is not established on the basis of systemic effects but because of local irritation of skin and mucous membranes, a BAT value can still be based on “critical toxicity” resulting from systemic exposure. In such exceptional cases where the MAK and BAT values are based on different end points, the two values do not necessarily correspond.

**BAT values and pregnancy**

Observance of the BAT values does not guarantee the protection of the unborn child in every case, as for numerous hazardous substances at the workplace there are no or no adequate studies of their prenatal toxicity. On the basis of the prerequisites named in Section VIII “MAK values and pregnancy”, the Commission examines all hazardous substances at the workplace with MAK or BAT values with respect to whether prenatal toxicity can be excluded when the MAK or BAT value is observed (group C), whether,
According to the available information, prenatal toxicity cannot be excluded (group B) or whether prenatal toxicity has been demonstrated (group A). For a number of substances at the workplace it is not possible to date, however, to make any statement as regards prenatal toxicity (group D). For substances classified in Pregnancy Risk Group B, the Commission examines whether it is possible on the basis of the data to indicate which concentration would correspond to classification in Pregnancy Risk Group C (group B with prerequisite for concerning group C).

If there is a correlation between the MAK and BAT values, the pregnancy risk group for the MAK value usually applies also for the correlating BAT value.

If the BAT value was not derived in correlation with the MAK value, a procedure like that described in Section VIII “MAK values and pregnancy” is followed for the pregnancy risk group for the BAT value.

**Surveillance**

The protection of the health of the individual, which is the reason for establishing BAT values, can be monitored by periodic quantitative determination of the chemical compounds or their metabolites or of biological parameters in biological material. The methods used must be diagnostically specific and sensitive enough for the purpose, acceptable to the employee and practicable for the physician. The sampling time must take into account both the exposure conditions at the workplace and the pharmacokinetics of the substance (measurement “strategy”). As a rule, especially for substances which accumulate in the organism, this may be achieved by taking samples at the end of a working day after an extended period of work (working week).

During exposure to vapours and gases which have systemic effects and a blood/air distribution coefficient larger than 5, and exposure to aerosols which have systemic effects, it must be taken into account that the concentrations of the substances in blood and tissues are positively correlated with the level of physical activity.

Likewise, the concentrations of inhaled gaseous substances in blood and tissues of persons working under hyperbaric pressure have been shown to correlate positively with the pressure. In such cases the observance of the BAT value must be monitored more frequently as the BAT value is attained in such workers at lower exposure concentrations than in persons working at normal pressures (see p. 14).

Whole blood, serum and urine samples are used as assay materials, occasionally and under certain conditions, also samples of alveolar air. Saliva and hair samples are not suitable assay materials for occupational-medical biomonitoring.

The analytical methods must yield reliable results and meet the requirements of statistical quality control. In a loose-leaf collection the Commission’s working group “Analysen in biologischem Material (Analyses in Biological Materials)” has compiled a series of methods which may be considered reliable for this purpose.46)

For workers who come into direct skin contact with substances which are designated with an “H”, it is necessary to check that the BAT value has not been exceeded or, in the case of carcinogenic substances, to assess the systemic dose in terms of the EKA.

---

Evaluation of analytical data

Like any results of laboratory investigations, toxicological analytical data can only be evaluated given knowledge of the whole situation. As well as other medical findings, especially

- the dynamics of pathophysiological processes
- the short-term effects of exposure-free periods
- the long-term effects of ageing
- the specific workplace conditions
- intensive physical activity and unusual conditions of atmospheric pressure and
- background exposures

must be individually taken into account.

In occupational-medicinal health practice analyses of urine specimens for the purpose of biological monitoring are carried out using spontaneously voided urine samples (spot samples). These are not suitable for an analysis if they have been highly concentrated or highly diluted through diuresis. In occupational-medicinal practice the creatinine content of the urine specimen is used as a criterion for the specimen’s acceptance while the specific weight or the osmolality is of little importance as a basis for evaluation. Creatinine concentrations <0.3 g/l or >3.0 g/l are criteria which would exclude the usability of the spot sample (see Addendum to Creatinine as Reference Parameter for the Concentration of Substances in Urine, DOI: 10.1002/3527600418.bbgeneral05e1715). This aspect should be considered even in the pre-analytical phase of biological monitoring.

Results from analyses of substances in biological material are subject to medical discretion. Only the physician who is responsible may interpret the results.

BAT values are established on the basis of the results of scientific studies and practical medical experience.

Allergenic substances

Depending on individual disposition, allergic reactions can be induced by various kinds of substances, more or less rapidly and in differing degrees of severity after sensitization of, for example, the skin or respiratory passages. The observance of BAT values cannot provide a guarantee that such reactions will not occur.

Carcinogenic substances

See Section XIII.

Biological reference values

See Section XV.

Mixtures of substances

BAT values apply as a rule for exposure to pure substances. They are not necessarily applicable for persons exposed to preparations containing more than one toxic substance (blends, mixtures, solutions). This is especially true for BAT values requiring determi-
nation of the substance itself or its metabolites. For mixtures of components with similar effects, a BAT value based on a biological parameter can be helpful in the assessment of health risks, as long as it provides a measure of critical clinical-functional effects of the components. The Commission makes every effort to define and publish such criteria for the biological effects of interfering components of mixtures.
XII List of substances

For interpretation of the occupational-medical and experimental toxicological data, reference should also be made to the “Biologische Arbeitsstoff-Toleranzwerte (BAT-Werte), Expositionsequivalente für krebserzeugende Arbeitsstoffe (EKA), Biologisch Leitwerte (BLW) und Biologische Arbeitsstoff-Referenzwerte (BAR) – Arbeitsmedizinisch-toxikologische Begründungen”.47)

Abbreviations

<table>
<thead>
<tr>
<th>BV</th>
<th>= assessment values in biological material (BAT/EKA/BLW/BAR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BAT</td>
<td>= biological tolerance value (“Biologischer Arbeitsstoff-Toleranzwert”)</td>
</tr>
<tr>
<td>EKA</td>
<td>= exposure equivalents for carcinogenic substances (see Chapter XIII)</td>
</tr>
<tr>
<td>BLW</td>
<td>= biological guidance value (“Biologischer Leitwert”, see Chapter XIV)</td>
</tr>
<tr>
<td>BAR</td>
<td>= biological reference value (“Biologischer Arbeitsstoff-Referenzwert”, see Chapter XV)</td>
</tr>
</tbody>
</table>

In the table under Substance

<table>
<thead>
<tr>
<th>H</th>
<th>= danger from percutaneous absorption (see Sections VII and XI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carc cat</td>
<td>= Carcinogen category (see Section III)</td>
</tr>
<tr>
<td>Preg(BAT)</td>
<td>= Pregnancy risk group for BAT value (see Section XI)</td>
</tr>
</tbody>
</table>

Assay material:

<table>
<thead>
<tr>
<th>B</th>
<th>= whole blood</th>
</tr>
</thead>
<tbody>
<tr>
<td>B_E</td>
<td>= erythrocyte fraction of whole blood</td>
</tr>
<tr>
<td>U</td>
<td>= urine</td>
</tr>
<tr>
<td>P/S</td>
<td>= plasma/serum</td>
</tr>
</tbody>
</table>

Sampling time:

a not fixed
b end of exposure or end of shift
c for long-term exposures: at the end of the shift after several shifts
d at the beginning of the next shift
e time after end of exposure: … hours
f after exposure for at least 3 months
g immediately after exposure

Substances which have been examined for possible biological monitoring and for which there is documentation in “Biologische Arbeitsstoff-Toleranzwerte (BAT-Werte), Expositionsequivalente für krebserzeugende Arbeitsstoffe (EKA), Biologische Leitwerte (BLW) und Biologische Arbeitsstoff-Referenzwerte (BAR) – Arbeitsmedizinisch-toxikologische Begründungen”.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>BV</th>
<th>Value or correlation</th>
<th>Assay-material</th>
<th>Sampling-time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetone [67-64-1]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acetone</td>
<td>BAT</td>
<td>80 mg/l</td>
<td>U</td>
<td>b</td>
</tr>
<tr>
<td>Acetylcholine esterase inhibitors</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acetylcholine esterase</td>
<td>BAT</td>
<td>Reduction of activity to 70% of reference value</td>
<td>B_E</td>
<td>b, c</td>
</tr>
<tr>
<td>Acrolein [107-02-8]</td>
<td>Calcat: 3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3-Hydroxypropyl mercapturic acid</td>
<td>BAR</td>
<td>600 μg/g creatinine</td>
<td>U</td>
<td>b, c</td>
</tr>
<tr>
<td>Acrylamide [79-06-1]</td>
<td>Perc abs: H</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N-(2-Carbonamideethyl)valine</td>
<td>EKA</td>
<td>see section XIII.1</td>
<td>B_E</td>
<td>f</td>
</tr>
<tr>
<td></td>
<td>BLW</td>
<td>550 pmol/g globin</td>
<td>B_E</td>
<td>f</td>
</tr>
<tr>
<td></td>
<td>BAR</td>
<td>50 pmol/g globin</td>
<td>B_E</td>
<td>f</td>
</tr>
<tr>
<td>N-Acetyl-S-(2-carbonamideethyl) cysteine</td>
<td>BAR</td>
<td>100 μg/g creatinine</td>
<td>U</td>
<td>b</td>
</tr>
<tr>
<td>★ Acrylonitrile [107-13-1]</td>
<td>Perc abs: H</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S-(2-Cyanoethyl) mercapturic acid</td>
<td>BAR</td>
<td>15 μg/g creatinine</td>
<td>U</td>
<td>b, c</td>
</tr>
<tr>
<td>N-(2-Cyanoethyl)valine</td>
<td>EKA</td>
<td>see section XIII.1</td>
<td>B_E</td>
<td>f</td>
</tr>
<tr>
<td></td>
<td>BAR</td>
<td>12 pmol/g globin</td>
<td>B_E</td>
<td>f</td>
</tr>
<tr>
<td>Alkali chromates (Cr(VI))</td>
<td>Calcat: 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chromium</td>
<td>EKA</td>
<td>see section XIII.1</td>
<td>B_E, U</td>
<td>b, c</td>
</tr>
<tr>
<td>Aluminium [7429-90-5]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aluminium</td>
<td>BAT</td>
<td>50 μg/g creatinine</td>
<td>U</td>
<td>c</td>
</tr>
<tr>
<td></td>
<td>BAR</td>
<td>15 μg/g creatinine</td>
<td>U</td>
<td>c</td>
</tr>
<tr>
<td>4-Aminobiphenyl [92-67-1]</td>
<td>Perc abs: H</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-Aminobiphenyl (released from haemoglobin conjugate)</td>
<td>EKA</td>
<td>not established</td>
<td>B</td>
<td>b</td>
</tr>
<tr>
<td></td>
<td>BLW</td>
<td>not established</td>
<td>B_E</td>
<td>f</td>
</tr>
<tr>
<td></td>
<td>BAR</td>
<td>15 ng/l</td>
<td>B_E</td>
<td>f</td>
</tr>
</tbody>
</table>
### Aniline [62-53-3]

<table>
<thead>
<tr>
<th>Parameter</th>
<th>BV</th>
<th>Value or correlation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aniline (after hydrolysis)</td>
<td>BAT</td>
<td>500 μg/l BAT value derived as ceiling value because of acute toxic effects</td>
</tr>
<tr>
<td>Aniline (released from haemoglobin conjugate)</td>
<td>BLW</td>
<td>100 μg/l see section XIV.1</td>
</tr>
</tbody>
</table>

**Assay-material**: U  **Sampling-time**: b

### Antimony [7440-36-0] and its inorganic compounds including stibine [7803-52-3]

<table>
<thead>
<tr>
<th>Parameter</th>
<th>BV</th>
<th>Value or correlation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antimony</td>
<td>EKA</td>
<td>not established see section XIII.2 for antimony(III) oxide</td>
</tr>
<tr>
<td>Antimony</td>
<td>BAR</td>
<td>0.2 μg/l see section XV.1 for antimony and stibine</td>
</tr>
</tbody>
</table>

**Assay-material**: U  **Sampling-time**: b, c

### Arsenic [7440-38-2] and inorganic arsenic compounds apart from arsine

<table>
<thead>
<tr>
<th>Parameter</th>
<th>BV</th>
<th>Value or correlation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inorganic arsenic and methylated metabolites volatile arsenic compounds determined by direct hydrogenation</td>
<td>BLW</td>
<td>50 μg/l see section XIV.1</td>
</tr>
<tr>
<td>∑ Arsenic(+III), arsenic(+V), monomethylarsonic acid and dimethylarsinic acid</td>
<td>EKA</td>
<td>see section XIII.1</td>
</tr>
<tr>
<td>Arsenic(+III)</td>
<td>BAR</td>
<td>0.5 μg/l see section XV.1</td>
</tr>
<tr>
<td>Arsenic(+V)</td>
<td>BAR</td>
<td>0.5 μg/l see section XV.1</td>
</tr>
<tr>
<td>Monomethylarsonic acid</td>
<td>BAR</td>
<td>2 μg/l see section XV.1</td>
</tr>
<tr>
<td>Dimethylarsinic acid</td>
<td>BAR</td>
<td>10 μg/l see section XV.1</td>
</tr>
</tbody>
</table>

**Assay-material**: U  **Sampling-time**: b, c

### Barium compounds (soluble) (as Ba [7440-39-3])

<table>
<thead>
<tr>
<th>Parameter</th>
<th>BV</th>
<th>Value or correlation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barium</td>
<td>BAR</td>
<td>10 μg/l see section XV.1</td>
</tr>
</tbody>
</table>

**Assay-material**: U  **Sampling-time**: b, c

### Benzene [71-43-2]

<table>
<thead>
<tr>
<th>Parameter</th>
<th>BV</th>
<th>Value or correlation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benzene</td>
<td>EKA</td>
<td>see section XIII.1</td>
</tr>
<tr>
<td>Benzene</td>
<td>BAR</td>
<td>0.3 μg/l see section XV.1 evaluated for non-smokers</td>
</tr>
<tr>
<td>S-Phenylmercapturic acid</td>
<td>EKA</td>
<td>see section XIII.1</td>
</tr>
<tr>
<td>S-Phenylmercapturic acid</td>
<td>BAR</td>
<td>0.3 μg/g creatinine see section XV.1 evaluated for non-smokers</td>
</tr>
<tr>
<td>trans, trans-Muconic acid</td>
<td>EKA</td>
<td>see section XIII.1</td>
</tr>
<tr>
<td>trans, trans-Muconic acid</td>
<td>BAR</td>
<td>150 μg/g creatinine see section XV.1 evaluated for non-smokers</td>
</tr>
</tbody>
</table>

**Assay-material**: U  **Sampling-time**: b
<table>
<thead>
<tr>
<th>Parameter</th>
<th>BV</th>
<th>Value or correlation</th>
<th>Assay-material</th>
<th>Sampling-time</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Benzidine [92-87-5]</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Perc abs: H</td>
<td>Carc cat: 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benzidine</td>
<td>EKA</td>
<td>not established see section XIII.2</td>
<td>U</td>
<td>b, c</td>
</tr>
<tr>
<td>BAR</td>
<td>not established see section XV.2</td>
<td>U</td>
<td>b, c</td>
<td></td>
</tr>
<tr>
<td>Benzidine adducts</td>
<td>EKA</td>
<td>not established see section XIII.2</td>
<td>P/S, B&lt;sub&gt;a&lt;/sub&gt;</td>
<td>f</td>
</tr>
<tr>
<td>BAR</td>
<td>not established see section XV.2</td>
<td>P/S, B&lt;sub&gt;a&lt;/sub&gt;</td>
<td>f</td>
<td></td>
</tr>
<tr>
<td><strong>Beryllium [7440-41-7] and its inorganic compounds</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carc cat: 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beryllium</td>
<td>EKA</td>
<td>not established see section XIII.2</td>
<td>U</td>
<td>b, c</td>
</tr>
<tr>
<td>BAR</td>
<td>0.05 μg/l see section XV.1</td>
<td>U</td>
<td>b, c</td>
<td></td>
</tr>
<tr>
<td><strong>Bisphenol A (4,4′-Isopropylidenediphenol) [80-05-7]</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bisphenol A (after hydrolysis)</td>
<td>BLW</td>
<td>80 mg/l see section XIV.1</td>
<td>U</td>
<td>b</td>
</tr>
<tr>
<td><strong>Bisphenol S [80-09-1]</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bisphenol S (after hydrolysis)</td>
<td>BAR</td>
<td>1 μg/l see section XV.1</td>
<td>U</td>
<td>b</td>
</tr>
<tr>
<td><strong>Boric acid [10043-35-3] and tetraborates</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Boron</td>
<td>BAT</td>
<td>not established see section XII.2</td>
<td>U</td>
<td>difference between pre-shift and post-shift urine</td>
</tr>
<tr>
<td><strong>1-Bromopropane [106-94-5]</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Perc abs: H</td>
<td>Carc cat: 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S(n-Propyl)mercapturic acid</td>
<td>EKA</td>
<td>see section XIII.1</td>
<td>U</td>
<td>c</td>
</tr>
<tr>
<td><strong>1,3-Butadiene [106-99-0]</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carc cat: 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3,4-Dihydroxybutyl mercapturic acid synonym for N-acetyl-S-(3,4-dihydroxybutyl)-L-cysteine</td>
<td>EKA</td>
<td>see section XIII.1</td>
<td>U</td>
<td>b, c</td>
</tr>
<tr>
<td>BAR</td>
<td>400 μg/g creatinine see section XV.1 evaluated for non-smokers</td>
<td>U</td>
<td>b, c</td>
<td></td>
</tr>
<tr>
<td>2-Hydroxy-3-butenyl mercapturic acid synonym for N-acetyl-S-(2-hydroxy-3-butenyl)-L-cysteine</td>
<td>EKA</td>
<td>see section XIII.1</td>
<td>U</td>
<td>b, c</td>
</tr>
<tr>
<td>BAR</td>
<td>&lt; 2 μg/g creatinine see section XV.1 evaluated for non-smokers</td>
<td>U</td>
<td>b, c</td>
<td></td>
</tr>
<tr>
<td><strong>2-Butanone (Methyl ethyl ketone) [78-93-3]</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Perc abs: H</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-Butanone</td>
<td>BAT</td>
<td>2 mg/l</td>
<td>U</td>
<td>b</td>
</tr>
<tr>
<td><strong>2-Butoxyethanol [111-76-2]</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Perc abs: H</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Butoxyacetic acid (after hydrolysis)</td>
<td>BAT</td>
<td>150 mg/g creatinine</td>
<td>U</td>
<td>b, c</td>
</tr>
<tr>
<td><strong>2-Butoxyethyl acetate [112-07-2]</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Perc abs: H</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Butoxyacetic acid (after hydrolysis)</td>
<td>BAT</td>
<td>150 mg/g creatinine</td>
<td>U</td>
<td>b, c</td>
</tr>
<tr>
<td><strong>n-Butyl alcohol [71-36-3]</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n-Butyl alcohol</td>
<td>BAT</td>
<td>2 mg/g creatinine</td>
<td>U</td>
<td>d</td>
</tr>
<tr>
<td>BAT</td>
<td>10 mg/g creatinine</td>
<td>U</td>
<td>b</td>
<td></td>
</tr>
<tr>
<td>Parameter</td>
<td>BV</td>
<td>Value or correlation</td>
<td>Assay-material</td>
<td>Sampling-time</td>
</tr>
<tr>
<td>-----------</td>
<td>----</td>
<td>----------------------</td>
<td>----------------</td>
<td>---------------</td>
</tr>
<tr>
<td>tert-Butyl methyl ether [1634-04-4]</td>
<td>Carc cat: 3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>tert-Butyl methyl ether</td>
<td>BAT</td>
<td>not established see section XII.2</td>
<td>B, U</td>
<td>b</td>
</tr>
<tr>
<td>tert-Butyl alcohol</td>
<td>BAT</td>
<td>not established see section XII.2</td>
<td>B, U</td>
<td>-</td>
</tr>
<tr>
<td>p-t-Butylphenol [98-54-4]</td>
<td>Perc abs: H</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p-t-Butylphenol (after hydrolysis)</td>
<td>BAT</td>
<td>2 mg/l</td>
<td>U</td>
<td>b</td>
</tr>
<tr>
<td>Cadmium [7440-43-9] and its inorganic compounds</td>
<td>Perc abs: H</td>
<td>Carc cat: 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cadmium</td>
<td>BLW</td>
<td>not established see section XIV.2</td>
<td>U</td>
<td>a</td>
</tr>
<tr>
<td></td>
<td>BAR</td>
<td>1 μg/l see section XV.1 evaluated for non-smokers</td>
<td>B</td>
<td>a</td>
</tr>
<tr>
<td></td>
<td>BAR</td>
<td>0.8 μg/l see section XV.1 evaluated for non-smokers</td>
<td>U</td>
<td>a</td>
</tr>
<tr>
<td>Carbon disulfide [75-15-0]</td>
<td>Perc abs: H</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-Thiothiazolidine-4-carboxylic acid (TTCA)</td>
<td>BAT</td>
<td>2 mg/g creatinine</td>
<td>U</td>
<td>b</td>
</tr>
<tr>
<td>Carbon monoxide [630-08-0]</td>
<td></td>
<td></td>
<td>Preg(BAT): B</td>
<td></td>
</tr>
<tr>
<td>CO-Hb</td>
<td>BAT</td>
<td>5% BAT value derived as ceiling value because of acute toxic effects. Evaluated for non-smokers</td>
<td>B</td>
<td>b</td>
</tr>
<tr>
<td>Carbon tetrachloride [56-23-5]</td>
<td>Perc abs: H</td>
<td>Carc cat: 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carbon tetrachloride</td>
<td>BAT</td>
<td>3.5 μg/l</td>
<td>B</td>
<td>c</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Note regarding prerequisites for Pregnancy Risk Group C see BAT addendum</td>
<td></td>
</tr>
<tr>
<td>Σ PCB 28, PCB 52, PCB 101, PCB 138, PCB 153, PCB 180</td>
<td>BAT</td>
<td>15 μg/l</td>
<td>P</td>
<td>a</td>
</tr>
<tr>
<td>PCB 28</td>
<td>BAR</td>
<td>0.02 μg/l see section XV.1</td>
<td>P</td>
<td>a</td>
</tr>
<tr>
<td>PCB 52</td>
<td>BAR</td>
<td>&lt; 0.01 μg/l see section XV.1</td>
<td>P</td>
<td>a</td>
</tr>
<tr>
<td>PCB 101</td>
<td>BAR</td>
<td>&lt; 0.01 μg/l see section XV.1</td>
<td>P</td>
<td>a</td>
</tr>
<tr>
<td>4-Chlorocatechol (after hydrolysis)</td>
<td>BAT</td>
<td>80 mg/g creatinine</td>
<td>U</td>
<td>b</td>
</tr>
<tr>
<td>1-Chloro-2,3-epoxypropane (Epichlorohydrin) [106-89-8]</td>
<td>Perc abs: H</td>
<td>Carc cat: 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S-(3-Chloro-2-hydroxypropyl)mercapturic acid</td>
<td>EKA</td>
<td>see section XIII.1</td>
<td>U</td>
<td>b, c</td>
</tr>
<tr>
<td>Chloroprene [126-99-8]</td>
<td>Perc abs: H</td>
<td>Carc cat: 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3,4-Dihydroxybutyl mercapturic acid</td>
<td>BAR</td>
<td>400 μg/g creatinine see section XV.1 evaluated for non-smokers</td>
<td>U</td>
<td>b, c</td>
</tr>
<tr>
<td>Chromium [7440-47-3] and its compounds</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total chromium</td>
<td>BAR</td>
<td>0.6 μg/l see section XV.1</td>
<td>U</td>
<td>b</td>
</tr>
<tr>
<td>Parameter</td>
<td>BV</td>
<td>Value or correlation</td>
<td>Assay-material</td>
<td>Sampling-time</td>
</tr>
<tr>
<td>-----------</td>
<td>----</td>
<td>----------------------</td>
<td>----------------</td>
<td>---------------</td>
</tr>
<tr>
<td>Cobalt [7440-48-4] and cobalt compounds</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Perc abs: H</td>
<td>Carc cat: 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cobalt</td>
<td>EKA</td>
<td>see section XIII.1</td>
<td>U</td>
<td>c</td>
</tr>
<tr>
<td></td>
<td>BLW</td>
<td>35 μg/l</td>
<td>U</td>
<td>c</td>
</tr>
<tr>
<td></td>
<td>BAR</td>
<td>1.5 μg/l</td>
<td>U</td>
<td>c</td>
</tr>
<tr>
<td>Copper [7440-50-8] and its inorganic compounds</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Copper</td>
<td>BAT</td>
<td>not established</td>
<td>U</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>BAR</td>
<td>not established</td>
<td>U</td>
<td>-</td>
</tr>
<tr>
<td>★ Cresol (all isomers) [1319-77-3]: o-cresol [95-48-7], m-cresol [108-39-4], p-cresol [106-44-5]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Perc abs: H</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cresol (sum of all isomers after hydrolysis)</td>
<td>BAT</td>
<td>not established</td>
<td>U</td>
<td>b</td>
</tr>
<tr>
<td></td>
<td>BLW</td>
<td>not established</td>
<td>U</td>
<td>b</td>
</tr>
<tr>
<td>Cyclohexane [110-82-7]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-Cyclohexanediol (after hydrolysis)</td>
<td>BAT</td>
<td>150 mg/g creatinine</td>
<td>U</td>
<td>c</td>
</tr>
<tr>
<td>Cyclohexanone [108-94-1]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Perc abs: H</td>
<td>Carc cat: 3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-Cyclohexanediol (after hydrolysis)</td>
<td>EKA</td>
<td>see section XIII.1</td>
<td>U</td>
<td>c</td>
</tr>
<tr>
<td>Cyclohexanol (after hydrolysis)</td>
<td>EKA</td>
<td>see section XIII.1</td>
<td>U</td>
<td>b</td>
</tr>
<tr>
<td>4,4ʹ-Diaminodiphenylmethane [101-77-9]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Perc abs: H</td>
<td>Carc cat: 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4,4ʹ-Diaminodiphenylmethane (after hydrolysis)</td>
<td>BLW</td>
<td>not established</td>
<td>U</td>
<td>b</td>
</tr>
<tr>
<td></td>
<td>BAR</td>
<td>&lt; 0.5 μg/l</td>
<td>U</td>
<td>b</td>
</tr>
<tr>
<td>4,4ʹ-Diaminodiphenylmethane (released from haemoglobin conjugate)</td>
<td>BAR</td>
<td>&lt; 5 ng/l</td>
<td>Bg</td>
<td>f</td>
</tr>
<tr>
<td>1,2-Dichlorobenzene [95-50-1]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Perc abs: H</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-Dichlorobenzene</td>
<td>BAT</td>
<td>140 μg/l</td>
<td>B</td>
<td>g</td>
</tr>
<tr>
<td>3,4- and 4,5-Dichlorocatechol (after hydrolysis)</td>
<td>BAT</td>
<td>150 mg/g creatinine</td>
<td>U</td>
<td>b, c</td>
</tr>
<tr>
<td>1,4-Dichlorobenzene [106-46-7]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Perc abs: H</td>
<td>Carc cat: 4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2,5-Dichlorophenol (after hydrolysis)</td>
<td>BAT</td>
<td>10 mg/l</td>
<td>U</td>
<td>b, c</td>
</tr>
<tr>
<td></td>
<td>EKA</td>
<td>see section XIII.1</td>
<td>U</td>
<td>b, c</td>
</tr>
<tr>
<td></td>
<td>BAR</td>
<td>25 μg/l</td>
<td>U</td>
<td>b, c</td>
</tr>
<tr>
<td>Dichloromethane [75-09-2]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Perc abs: H</td>
<td>Carc cat: 5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dichloromethane</td>
<td>BAT</td>
<td>500 μg/l</td>
<td>B</td>
<td>g</td>
</tr>
<tr>
<td></td>
<td>EKA</td>
<td>see section XIII.1</td>
<td>B</td>
<td>g</td>
</tr>
<tr>
<td>★ 1,2-Dichloropropane [78-87-5]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Perc abs: H</td>
<td>Carc cat: 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-Hydroxypropyl mercapturic acid</td>
<td>BAR</td>
<td>not established</td>
<td>U</td>
<td>b, c</td>
</tr>
<tr>
<td>Di(2-ethylhexyl)phthalate (DEHP) [117-81-7]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Perc abs: H</td>
<td>Carc cat: 4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Σ (MEHP + 5-OH-MEHP + 5-oxo-MEHP + 5-cx-MEPP) (after hydrolysis)</td>
<td>BLW</td>
<td>4 mg/g creatinine</td>
<td>U</td>
<td>c</td>
</tr>
<tr>
<td>Parameter</td>
<td>BV</td>
<td>Value or correlation</td>
<td>Assay-material</td>
<td>Sampling-time</td>
</tr>
<tr>
<td>-----------</td>
<td>----</td>
<td>----------------------</td>
<td>----------------</td>
<td>--------------</td>
</tr>
<tr>
<td><strong>N,N-Dimethyl acetamide [127-19-5]</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Perc abs: H</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N-Methyl acetamide plus N-Hydroxy- methyl-N-methyl acetamide</td>
<td>BAT</td>
<td>25 mg/l</td>
<td>U</td>
<td>b, c</td>
</tr>
<tr>
<td><strong>N,N-Dimethylformamide [68-12-2]</strong></td>
<td>Perc cat: 4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Perc abs: H</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N-Methylformamide plus N-Hydroxy- methyl-N-methylformamide</td>
<td>BAT</td>
<td>20 mg/l</td>
<td>U</td>
<td>b</td>
</tr>
<tr>
<td>N-Acetyl-S-(methylcarbamoyl)-L-cysteine</td>
<td>BAT</td>
<td>25 mg/g creatinine</td>
<td>U</td>
<td>b, c</td>
</tr>
<tr>
<td><strong>Dimethyl sulfate [77-78-1]</strong></td>
<td>Perc abs: H</td>
<td>Carc cat: 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N-Methylvaline</td>
<td>EKA</td>
<td>see section XIII.1</td>
<td>B&lt;sub&gt;K&lt;/sub&gt;</td>
<td>f</td>
</tr>
<tr>
<td><strong>1,4-Dioxane [123-91-1]</strong></td>
<td>Perc abs: H</td>
<td>Carc cat: 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-Hydroxyethoxyacetic acid</td>
<td>BAT</td>
<td>200 mg/g creatinine</td>
<td>U</td>
<td>b</td>
</tr>
<tr>
<td><strong>1,2-Epoxypropane [75-56-9]</strong></td>
<td>Perc abs: H</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carc cat: 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N-(2-Hydroxypropyl)valine</td>
<td>BAT</td>
<td>2500 pmol/g globin</td>
<td>B&lt;sub&gt;K&lt;/sub&gt;</td>
<td>f</td>
</tr>
<tr>
<td>Ethoxyacetic acid</td>
<td>EKA</td>
<td>see section XIII.1</td>
<td>B&lt;sub&gt;K&lt;/sub&gt;</td>
<td>f</td>
</tr>
<tr>
<td>Ethoxyacetic acid</td>
<td>BAR</td>
<td>10 pmol/g globin</td>
<td>B&lt;sub&gt;K&lt;/sub&gt;</td>
<td>f</td>
</tr>
<tr>
<td>see section XV.1</td>
<td>see section XV.1</td>
<td>evaluated for non-smokers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-Hydroxypropyl mercapturic acid</td>
<td>BAR</td>
<td>25 μg/g creatinine</td>
<td>U</td>
<td>b, c</td>
</tr>
<tr>
<td>see section XV.1</td>
<td>see section XV.1</td>
<td>evaluated for non-smokers</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>2-Ethoxyethanol [110-80-5]</strong></td>
<td>Perc abs: H</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ethoxyacetic acid</td>
<td>BAT</td>
<td>50 mg/l</td>
<td>U</td>
<td>c</td>
</tr>
<tr>
<td><strong>2-Ethoxyethyl acetate [111-15-9]</strong></td>
<td>Perc abs: H</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ethoxyacetic acid</td>
<td>BAT</td>
<td>50 mg/l</td>
<td>U</td>
<td>c</td>
</tr>
<tr>
<td><strong>1-Ethoxy-2-propanol [1569-02-4]</strong></td>
<td>Perc abs: H</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-Ethoxy-2-propanol</td>
<td>BAT</td>
<td>not established</td>
<td>U</td>
<td>b</td>
</tr>
<tr>
<td>see section XII.2</td>
<td>see section XII.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>1-Ethoxy-2-propyl acetate [54839-24-6]</strong></td>
<td>Perc abs: H</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-Ethoxy-2-propanol</td>
<td>BAT</td>
<td>not established</td>
<td>U</td>
<td>b</td>
</tr>
<tr>
<td>see section XII.2</td>
<td>see section XII.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Ethylbenzene [100-41-4]</strong></td>
<td>Perc abs: H</td>
<td>Carc cat: 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mandelic acid plus phenyl glyoxylic acid</td>
<td>BAT</td>
<td>250 mg/g creatinine</td>
<td>U</td>
<td>b</td>
</tr>
<tr>
<td>EKA</td>
<td>see section XIII.1</td>
<td>U</td>
<td>b</td>
<td></td>
</tr>
<tr>
<td><strong>Ethylene [74-85-1]</strong></td>
<td>Carc cat: 3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N-(2-Hydroxyethyl)valine</td>
<td>EKA</td>
<td>see section XIII.1</td>
<td>B&lt;sub&gt;K&lt;/sub&gt;</td>
<td>f</td>
</tr>
<tr>
<td><strong>Ethylene glycol dinitrate [628-96-6]</strong></td>
<td>Perc abs: H</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ethylene glycol dinitrate</td>
<td>BAT</td>
<td>not established</td>
<td>B</td>
<td>-</td>
</tr>
<tr>
<td>see section XII.2</td>
<td>see section XII.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parameter</td>
<td>BV</td>
<td>Value or correlation</td>
<td>Assay-material</td>
<td>Sampling-time</td>
</tr>
<tr>
<td>-----------</td>
<td>----</td>
<td>----------------------</td>
<td>----------------</td>
<td>---------------</td>
</tr>
<tr>
<td>Ethylene oxide [75-21-8]</td>
<td>Perc abs: H</td>
<td>Carc cat: 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N-(2-Hydroxyethyl)valine</td>
<td>EKA</td>
<td>see section XIII.1</td>
<td>B&lt;sub&gt;e&lt;/sub&gt;</td>
<td>f</td>
</tr>
<tr>
<td>Formic acid methyl ester [107-31-3]</td>
<td>Perc abs: H</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Methanol</td>
<td>BAT</td>
<td>not established</td>
<td>U</td>
<td>c</td>
</tr>
<tr>
<td>Formic acid</td>
<td>BAT</td>
<td>not established</td>
<td>U</td>
<td>-</td>
</tr>
<tr>
<td>★ Gadolinium [7440-54-2]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gadolinium</td>
<td>BAR</td>
<td>not established</td>
<td>U</td>
<td></td>
</tr>
<tr>
<td>★ Glycidol (Glycid) [556-52-5]</td>
<td>Perc abs: H</td>
<td>Carc cat: 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N-(2,3-Dihydroxypropyl)valine</td>
<td>BAR</td>
<td>15 pmol/g globin</td>
<td>B&lt;sub&gt;e&lt;/sub&gt;</td>
<td>f</td>
</tr>
<tr>
<td>Halothane (2-Bromo-2-chloro-1,1,1-trifluoroethane) [151-67-7]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trifluoroacetic acid</td>
<td>BAT</td>
<td>2.5 mg/l</td>
<td>B</td>
<td>b, c</td>
</tr>
<tr>
<td>★ n-Heptane [142-82-5]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heptane-2,5-dione</td>
<td>BAT</td>
<td>250 μg/l</td>
<td>U</td>
<td>b</td>
</tr>
<tr>
<td>Hexachlorobenzene [118-74-1]</td>
<td>Perc abs: H</td>
<td>Carc cat: 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hexachlorobenzene</td>
<td>BAT</td>
<td>150 μg/l</td>
<td>P/S</td>
<td>a</td>
</tr>
<tr>
<td>1,6-Hexamethylene diisocyanate [822-06-0]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hexamethylenediamine (after hydrolysis)</td>
<td>BAT</td>
<td>15 μg/g creatinine</td>
<td>U</td>
<td>b</td>
</tr>
<tr>
<td>n-Hexane [110-54-3]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2,5-Hexanedione plus 4,5-dihydroxy-2-hexanone (after hydrolysis)</td>
<td>BAT</td>
<td>5 mg/l</td>
<td>U</td>
<td>b, c</td>
</tr>
<tr>
<td>2-Hexanone [591-78-6]</td>
<td>Perc abs: H</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2,5-Hexanedione plus 4,5-dihydroxy-2-hexanone (after hydrolysis)</td>
<td>BAT</td>
<td>5 mg/l</td>
<td>U</td>
<td>b, c</td>
</tr>
<tr>
<td>Hexone (Methyl isobutyl ketone) [108-10-1]</td>
<td>Perc abs: H</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hexone</td>
<td>BAT</td>
<td>0.7 mg/l</td>
<td>U</td>
<td>b</td>
</tr>
<tr>
<td>Hydrazine [302-01-2]</td>
<td>Perc abs: H</td>
<td>Carc cat: 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydrazine</td>
<td>EKA</td>
<td>see section XIII.1</td>
<td>U, P</td>
<td>b</td>
</tr>
<tr>
<td>Hydrogen fluoride [7664-39-3] and inorganic fluorine compounds (fluorides)</td>
<td>Perc abs: H</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydrogen fluoride is not designated with &quot;H&quot;</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fluoride</td>
<td>BAT</td>
<td>4 mg/l</td>
<td>U</td>
<td>b</td>
</tr>
<tr>
<td>Iodine [7553-56-2] and inorganic iodides</td>
<td>Perc abs: H</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Iodine</td>
<td>BAR</td>
<td>not established</td>
<td>U</td>
<td>-</td>
</tr>
<tr>
<td>Isopropyl alcohol [67-63-0]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acetone</td>
<td>BAT</td>
<td>25 mg/l</td>
<td>B</td>
<td>b</td>
</tr>
<tr>
<td></td>
<td>BAT</td>
<td>25 mg/l</td>
<td>U</td>
<td>b</td>
</tr>
<tr>
<td>Parameter</td>
<td>BV</td>
<td>Value or correlation</td>
<td>Assay-material</td>
<td>Sampling-time</td>
</tr>
<tr>
<td>--------------------------------------------------------------------------</td>
<td>-----</td>
<td>---------------------------------------------------------------------------------------</td>
<td>----------------</td>
<td>---------------</td>
</tr>
<tr>
<td><strong>Lead [7439-92-1] and its compounds (except lead arsenate, lead chromate and alkyl lead compounds)</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lead</td>
<td>BLW</td>
<td>200 μg/l</td>
<td>B</td>
<td>a</td>
</tr>
<tr>
<td></td>
<td></td>
<td>see section XIV.1 for women &gt; 45 years and for men</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BLW</td>
<td>not established</td>
<td>B</td>
<td>a</td>
</tr>
<tr>
<td></td>
<td></td>
<td>see section XIV.2 for women ≤ 45 years</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BAR</td>
<td>30 μg/l</td>
<td>B</td>
<td>a</td>
</tr>
<tr>
<td></td>
<td></td>
<td>see section XV.1 for women</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BAR</td>
<td>40 μg/l</td>
<td>B</td>
<td>a</td>
</tr>
<tr>
<td></td>
<td></td>
<td>see section XV.1 for men</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Lindane [58-89-9]</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Perc abs: H</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lithium [7439-93-2]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lithium</td>
<td>BAR</td>
<td>50 μg/l</td>
<td>U</td>
<td>a</td>
</tr>
<tr>
<td></td>
<td></td>
<td>see section XV.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Manganese [7439-96-5] and its inorganic compounds</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Manganese</td>
<td>BAT</td>
<td>not established</td>
<td>B</td>
<td>b, c</td>
</tr>
<tr>
<td></td>
<td></td>
<td>see section XII.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BAR</td>
<td>15 μg/l</td>
<td>B</td>
<td>b, c</td>
</tr>
<tr>
<td></td>
<td></td>
<td>see section XV.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Mercury [7439-97-6] and its inorganic compounds</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Perc abs: H</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mercury</td>
<td>BAT</td>
<td>25 μg/g creatinine</td>
<td>U</td>
<td>a</td>
</tr>
<tr>
<td></td>
<td></td>
<td>30 μg/l urine</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Mercury, organic compounds</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Perc abs: H</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mercury</td>
<td>EKA</td>
<td>not established</td>
<td>B</td>
<td>a</td>
</tr>
<tr>
<td></td>
<td></td>
<td>see section XIII.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Methanol [67-56-1]</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Perc abs: H</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Methanol</td>
<td>BAT</td>
<td>15 mg/l</td>
<td>U</td>
<td>b, c</td>
</tr>
<tr>
<td><strong>Methaemoglobin-forming substances</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Methaemoglobin-forming substances</td>
<td>BAT</td>
<td>not established</td>
<td>B</td>
<td>b</td>
</tr>
<tr>
<td></td>
<td></td>
<td>see section XII.2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Values of 1.5% methaemoglobin or more indicate exposure to methaemoglobin inducers. The causative substance should be used to evaluate the toxicity.

<p>| 2-Methoxyethanol [109-86-4]                                             |     |                                                                                       |                |               |
| Perc abs: H                                                             |     |                                                                                       |                |               |
| Methoxyacetic acid                                                      | BAT | 15 mg/g creatinine                                                                     | U              | b             |
| <strong>2-Methoxyethyl acetate [110-49-6]</strong>                                   |     |                                                                                       |                |               |
| Perc abs: H                                                             |     |                                                                                       |                |               |
| Methoxyacetic acid                                                      | BAT | 15 mg/g creatinine                                                                     | U              | b             |
| <strong>1-Methoxy-2-propanol [107-98-2]</strong>                                     |     |                                                                                       |                |               |
| Propylene glycol 1-methyl ether                                         | BAT | 15 mg/l                                                                                | U              | b             |
| <strong>Methyl bromide [74-83-9]</strong>                                           |     |                                                                                       |                |               |
| Carc cat: 3                                                             |     |                                                                                       |                |               |
| Bromide                                                                 | BLW | 12 mg/l                                                                                | P/S            | c             |
|                                                                          |     | see section XIV.1                                                                      |                |               |
| S-Methylcysteine albumin                                                | EKA | not established                                                                       | S              | a             |
|                                                                          |     | see section XIII.2                                                                     |                |               |</p>
<table>
<thead>
<tr>
<th>Parameter</th>
<th>BV</th>
<th>Value or correlation</th>
<th>Assay-material</th>
<th>Sampling-time</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>4,4’-Methylene-bis(2-chloroaniline) (MOCA) [101-14-4]</strong></td>
<td>Perc abs: H</td>
<td>&lt; 1 μg/l (see section XV.1)</td>
<td>U</td>
<td>b</td>
</tr>
<tr>
<td><strong>4,4’-Methylene diphenyl diisocyanate (MDI) [101-68-8]</strong> (inhalable fraction)</td>
<td>Perc abs: H</td>
<td>10 μg/l (see section XIV.1)</td>
<td>U</td>
<td>b</td>
</tr>
<tr>
<td><strong>N-Methyl-2-pyrrolidone [872-50-4]</strong></td>
<td>Perc abs: H</td>
<td>150 mg/l</td>
<td>U</td>
<td>b</td>
</tr>
<tr>
<td><strong>Molybdenum [7439-98-7] and its compounds</strong></td>
<td></td>
<td></td>
<td>U</td>
<td>-</td>
</tr>
<tr>
<td><strong>Naphthalene [91-20-3]</strong></td>
<td>Perc abs: H</td>
<td>35 μg/l (see section XV.1) evaluated for non-smokers</td>
<td>U</td>
<td>b, c</td>
</tr>
<tr>
<td><strong>2-Naphthylamine [91-59-8]</strong></td>
<td>Perc abs: H</td>
<td>not established (see section XIII.2)</td>
<td>U</td>
<td>b</td>
</tr>
<tr>
<td><strong>2-Naphthylamine adducts</strong></td>
<td>EKA</td>
<td>not established (see section XV.2)</td>
<td>B</td>
<td>f</td>
</tr>
<tr>
<td><strong>1,5-Naphthylene diisocyanate [3173-72-6]</strong></td>
<td>BLW</td>
<td>not established (see section XIV.2)</td>
<td>U</td>
<td>b</td>
</tr>
<tr>
<td><strong>Neurotoxic esterase inhibitors</strong></td>
<td>BAT</td>
<td>not established (see section XII.2)</td>
<td>B</td>
<td>b, c</td>
</tr>
<tr>
<td><strong>Nickel [7440-02-0] and its compounds</strong></td>
<td></td>
<td></td>
<td>U</td>
<td>c</td>
</tr>
<tr>
<td><strong>Nickel [7440-02-0] (nickel metal, nickel oxide, nickel carbonate, nickel sulfide, sulfidic ores)</strong></td>
<td></td>
<td></td>
<td>U</td>
<td>c</td>
</tr>
<tr>
<td><strong>Nickel (easily soluble nickel compounds, e. g. nickel acetate and similar soluble salts, nickel chloride, nickel sulfate)</strong></td>
<td></td>
<td></td>
<td>U</td>
<td>c</td>
</tr>
<tr>
<td><strong>Nitrobenzene [98-95-3]</strong></td>
<td>Perc abs: H</td>
<td>100 μg/l (see section XIV.1)</td>
<td>B</td>
<td>f</td>
</tr>
<tr>
<td>Parameter</td>
<td>BV Value or correlation</td>
<td>Assay-material</td>
<td>Sampling-time</td>
<td></td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>-------------------------</td>
<td>----------------</td>
<td>--------------</td>
<td></td>
</tr>
<tr>
<td><strong>Nitroglycerin [55-63-0]</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Perc abs: H</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-Glyceryl dinitrate</td>
<td>BLW not established</td>
<td>P/S b</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,3-Glyceryl dinitrate</td>
<td>BLW not established</td>
<td>P/S b</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Parathion [56-38-2]</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Perc abs: H</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p-Nitrophenol (after hydrolysis)</td>
<td>BAT 500 μg/l</td>
<td>U c</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acetylcholine esterase</td>
<td>BAT Reduction of activity to 70% of reference value BAT value derived as ceiling value because of acute toxic effects</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Pentachlorophenol [87-86-5]</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Perc abs: H</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pentachlorophenol</td>
<td>EKA not established</td>
<td>P/S a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pentachlorophenol (after hydrolysis)</td>
<td>EKA not established</td>
<td>U a</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Perfluorooctanesulfonic acid (PFOS) [1763-23-1] and its salts</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Perc abs: H</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Perfluorooctanesulfonic acid</td>
<td>BAT 15 mg/l</td>
<td>S a</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Perfluorooctanoic acid (PFOA) [335-67-1] and its inorganic salts</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Perc abs: H</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Perfluorooctanoic acid</td>
<td>BAT 5 mg/l</td>
<td>S a</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Phenol [108-95-2]</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Perc abs: H</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phenol (after hydrolysis)</td>
<td>BLW 200 mg/l</td>
<td>U b</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Polychlorinated biphenyls (PCB)</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>see Chlorinated biphenyls</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Polycyclic aromatic hydrocarbons (PAH)</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Perc abs: H</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3-Hydroxybenzo[a]pyrene (after hydrolysis)</td>
<td>EKA see section XIII.1</td>
<td>U d</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-Hydroxypyrene (after hydrolysis)</td>
<td>BAR 0.3 μg/g creatinine</td>
<td>U b, c</td>
<td></td>
<td></td>
</tr>
<tr>
<td>evaluated for non-smokers</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>iso-Propyl benzene (cumene) [98-82-8]</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Perc abs: H</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-Phenyl-2-propanol (after hydrolysis)</td>
<td>BAT 10 mg/g creatinine</td>
<td>U b</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Pyrethrum [8003-34-7] and Pyrethroids (e. g. allethrin, cyfluthrin, cypermethrin, deltamethrin, permethrin, resmethrin, phenthothin, tetramethrin)</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>see Section III, “pyrolysis products of organic materials”</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>trans-chrysanthemumdicarboxylic acid, 4-fluoro-3-phenoxbenzoic acid, cis- and trans-3-(2,2-dichlorovinyl)-2,2-dimethylcyclopropanecarboxylic acid or cis-3-(2,2-dichromovinyl)-2,2-dimethyl- cyclopropanecarboxylic acid (all parameters after hydrolysis)</td>
<td>BAT not established see section XII.2</td>
<td>U b</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Selenium [7782-49-2] and its inorganic compounds</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Perc abs: H</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Selenium</td>
<td>BAT 150 μg/l</td>
<td>S a</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BAR 100 μg/l</td>
<td>P/S a</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BAR 30 μg/g creatinine</td>
<td>U c</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parameter</td>
<td>BV Value or correlation</td>
<td>Assay-materiel</td>
<td>Sampling-time</td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>-------------------------</td>
<td>----------------</td>
<td>---------------</td>
<td></td>
</tr>
<tr>
<td><strong>Styrene [100-42-5]</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carc cat: 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mandelic acid plus phenyl glyoxylic acid</td>
<td>BAT 600 mg/g creatinine</td>
<td>U</td>
<td>b, c</td>
<td></td>
</tr>
<tr>
<td><strong>Tetrachloroethylene [127-18-4]</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Perc abs: H</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carc cat: 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tetrachloroethylene</td>
<td>BAT 200 μg/l</td>
<td>B</td>
<td>e</td>
<td></td>
</tr>
<tr>
<td>EKA see section XIII.1</td>
<td>B</td>
<td>e</td>
<td>16 hours after end of exposure</td>
<td></td>
</tr>
<tr>
<td><strong>Tetraethyllead [78-00-2]</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Perc abs: H</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diethyllead</td>
<td>BAT 25 μg/l, as Pb</td>
<td>U</td>
<td>b</td>
<td></td>
</tr>
<tr>
<td>Total lead (also applies for mixtures of tetraethyllead with tetramethyllead)</td>
<td>BAT 50 μg/l</td>
<td>U</td>
<td>b</td>
<td></td>
</tr>
<tr>
<td><strong>Tetrahydrofuran [109-99-9]</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Perc abs: H</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carc cat: 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tetrahydrofuran</td>
<td>BAT 2 mg/l</td>
<td>U</td>
<td>b</td>
<td></td>
</tr>
<tr>
<td><strong>Tetramethyllead [75-74-1]</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Perc abs: H</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total lead</td>
<td>BAT 50 μg/l</td>
<td>U</td>
<td>b</td>
<td></td>
</tr>
<tr>
<td><strong>Toluene (Toluol) [108-88-3]</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Perc abs: H</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Preg(BAT): C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Toluene</td>
<td>BAT 600 μg/l</td>
<td>B</td>
<td>g</td>
<td></td>
</tr>
<tr>
<td>Toluene-2,4-diamine (after hydrolysis)</td>
<td>BAT 75 μg/l</td>
<td>U</td>
<td>b</td>
<td></td>
</tr>
<tr>
<td>o-Cresol (after hydrolysis)</td>
<td>BAT 1.5 mg/l</td>
<td>U</td>
<td>b, c</td>
<td></td>
</tr>
<tr>
<td><strong>Toluene-2,4-diamine [95-80-7]</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Perc abs: H</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carc cat: 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Toluene-2,4-diamine (after hydrolysis)</td>
<td>EKA see section XIII.1</td>
<td>U</td>
<td>b</td>
<td></td>
</tr>
<tr>
<td>BAR not established</td>
<td>U</td>
<td>b</td>
<td>see section XV.2</td>
<td></td>
</tr>
<tr>
<td><strong>Toluene-2,4-diisocyanate [584-84-9]</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Preg(BAT): C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sum of 2,4- and 2,6-TDA (after hydrolysis)</td>
<td>BAT 5 μg/g creatinine</td>
<td>U</td>
<td>b</td>
<td></td>
</tr>
<tr>
<td>Toluene-2,4-diamine (after hydrolysis)</td>
<td>BAR not established</td>
<td>U</td>
<td>b</td>
<td>see section XV.2</td>
</tr>
<tr>
<td><strong>Toluene-2,6-diisocyanate [91-08-7]</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Preg(BAT): C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sum of 2,4- and 2,6-TDA (after hydrolysis)</td>
<td>BAT 5 μg/g creatinine</td>
<td>U</td>
<td>b</td>
<td></td>
</tr>
<tr>
<td><strong>Toluene diisocyanate, mixture [26471-62-5]</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Preg(BAT): C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sum of 2,4- and 2,6-TDA (after hydrolysis)</td>
<td>BAT 5 μg/g creatinine</td>
<td>U</td>
<td>b</td>
<td></td>
</tr>
<tr>
<td><strong>o-Toluidine [95-53-4]</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Perc abs: H</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carc cat: 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>o-Toluidine (after hydrolysis)</td>
<td>BAR 0.2 μg/l</td>
<td>U</td>
<td>b</td>
<td>see section XV.1 evaluated for non-smokers</td>
</tr>
<tr>
<td><strong>Tributyl phosphate [126-73-8]</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Perc abs: H</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carc cat: 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Di-n-butyl phosphate</td>
<td>BAR 0.5 μg/l</td>
<td>U</td>
<td>b</td>
<td>see section XV.1</td>
</tr>
<tr>
<td>Parameter</td>
<td>BV</td>
<td>Value or correlation</td>
<td>Assay-material</td>
<td>Sampling-time</td>
</tr>
<tr>
<td>-----------</td>
<td>----</td>
<td>----------------------</td>
<td>----------------</td>
<td>--------------</td>
</tr>
<tr>
<td>1,1,1-Trichloroethane (Methyl chloroform) [71-55-6]</td>
<td>Perc abs: H</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trichloroacetic acid</td>
<td>EKA</td>
<td>see section XIII.1</td>
<td>U</td>
<td>b, c</td>
</tr>
<tr>
<td>BAR</td>
<td>0.07 mg/l</td>
<td>see section XV.1</td>
<td>U</td>
<td>b, c</td>
</tr>
<tr>
<td>★ Tricresyl phosphate, sum of all o-isomers [78-30-8]</td>
<td>Perc abs: H</td>
<td>Carc cat: 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Di-o-cresylphosphate</td>
<td>BAT</td>
<td>not established</td>
<td>U</td>
<td>b</td>
</tr>
<tr>
<td>BAR</td>
<td>not established</td>
<td>see section XV.2</td>
<td>U</td>
<td>b</td>
</tr>
<tr>
<td>Trimethylbenzene (all isomers) 1,2,3-Trimethylbenzene [526-73-8], 1,2,4-Trimethylbenzene [95-63-6], 1,3,5-Trimethylbenzene [108-67-8]</td>
<td>Perc abs: H</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dimethyl benzoic acids (sum of all isomers after hydrolysis)</td>
<td>BAT</td>
<td>400 mg/g creatinine</td>
<td>U</td>
<td>b, c</td>
</tr>
<tr>
<td>2,4,6-Trinitrotoluene [118-96-7] (and isomers in technical mixtures)</td>
<td>Perc abs: H</td>
<td>Carc cat: 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-Amino-2,6-dinitrotoluene (after hydrolysis)</td>
<td>BAR</td>
<td>&lt; 1 μg/l</td>
<td>U</td>
<td>b</td>
</tr>
<tr>
<td>see section XV.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-Amino-4,6-dinitrotoluene (after hydrolysis)</td>
<td>BAR</td>
<td>&lt; 4 μg/l</td>
<td>U</td>
<td>b</td>
</tr>
<tr>
<td>see section XV.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Uranium [7440-61-1] and its hardly soluble inorganic compounds</td>
<td>Perc abs: H</td>
<td>Carc cat: 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Uranium</td>
<td>BAR</td>
<td>not established</td>
<td>U</td>
<td>a</td>
</tr>
<tr>
<td>see section XV.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Uranium compounds, soluble inorganic</td>
<td>Perc abs: H</td>
<td>Carc cat: 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Uranium</td>
<td>BAR</td>
<td>not established</td>
<td>U</td>
<td>a</td>
</tr>
<tr>
<td>see section XV.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vanadium [7440-62-2] and its inorganic compounds</td>
<td>Perc abs: H</td>
<td>Carc cat: 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vanadium</td>
<td>EKA</td>
<td>see section XIII.1</td>
<td>U</td>
<td>b, c</td>
</tr>
<tr>
<td>Vinyl chloride [75-01-4]</td>
<td>Perc abs: H</td>
<td>Carc cat: 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thiodiglycolic acid</td>
<td>EKA</td>
<td>see section XIII.1</td>
<td>U</td>
<td>c</td>
</tr>
<tr>
<td>BAR</td>
<td>1.5 mg/l</td>
<td>see section XV.1</td>
<td>U</td>
<td>d</td>
</tr>
<tr>
<td>Vitamin K antagonists</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quick value</td>
<td>BAT</td>
<td>Reduction of activity to no less than 70%</td>
<td>B</td>
<td>a</td>
</tr>
<tr>
<td>BAT value derived as ceiling value because of acute toxic effects</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Xylene (all isomers) [1330-20-7]</td>
<td>Perc abs: H</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Methylhippuric acid (toluric acid) (all isomers)</td>
<td>BAT</td>
<td>2000 mg/l</td>
<td>U</td>
<td>b</td>
</tr>
</tbody>
</table>

For the substances listed below, there is at present insufficient data for the derivation of a BAT value; however, documentation for these substances has been published in “Biologische Arbeitsstoff-Toleranzwerte (BAT-Werte), Expositionsäquivalente für krebserzeugende Arbeitsstoffe.”
gende Arbeitsstoffe (EKA), Biologische Leitwerte (BLW) und Biologische Arbeitsstoff-
Referenzwerte (BAR) – Arbeitsmedizinisch-toxikologische Begründungen”:

Boric acid [10043-35-3] and tetraborates
tert-Butyl methyl ether [1634-04-4]
Copper [7440-50-8] and its inorganic compounds
★ Cresol (all isomers) [1319-77-3]: o-cresol [95-48-7], m-cresol [108-39-4], p-cresol [106-44-5]
1-Ethoxy-2-propanol [1569-02-4]
1-Ethoxy-2-propyl acetate [54839-24-6]
Ethylene glycol dinitrate [628-96-6]
Formic acid methyl ester [107-31-3]
Manganese [7439-96-5] and its inorganic compounds
Methaemoglobin-forming substances
Molybdenum [7439-98-7] and its compounds
★ Neurotoxic esterase inhibitors
Pyrethrum [8003-34-7] and Pyrethroids (e.g. allethrin, cyfluthrin, cypermethrin, delta-
methrin, permethrin, resmethrin, phenothrin, tetramethrin)
★ Tricresyl phosphate, sum of all o-isomers [78-30-8]

3 BAT values examined with regard to their pregnancy risk group:

3.1 Substances at the workplace with correlation between MAK and BAT value:
N,N-Dimethylformamide [68-12-2] Group B with notification of the pre-
requisite for Pregnancy Risk Group C
★ Carbon monoxide [630-08-0] Group B
Chlorobenzene [108-90-7] Group C
Methanol [67-56-1] Group C
★ Toluene [108-88-03] Group C
★ Toluene-2,4-diisocyanate [584-84-9] Group C
★ Toluene-2,6-diisocyanate [91-08-7] Group C
★ Toluene diisocyanate, mixture [26471-62-5] Group C
1,1,1-Trichloroethane [71-55-6] Group C

3.2 Substances at the workplace without correlation between MAK and BAT value:
Chlorinated biphenyls [53469-21-9] Group B with notification of the pre-
requisite for Pregnancy Risk Group C
Lindane [58-89-9] Group C
XIII Carcinogenic substances

Chemical substances which, by their own action or by that of their reactive intermediates or metabolites, are known to cause cancer in man or for which there is good evidence of a human cancer risk (Carcinogen categories 1 and 2) or which cause concern because they are or could be carcinogenic (Carcinogen category 3) and for which no MAK value can be derived are not given BAT values because at present it is not possible to specify safe levels of such substances in biological materials. Therefore the handling of such substances must take place under the conditions described in Section III of the List of MAK and BAT Values. The analysis of carcinogenic substances in biological material is not carried out for the application of BAT values in the strict sense but rather for the occupational-medical detection and quantification of the individual exposure to the substances. Concentrations of a substance or its metabolites in biological material which are higher than those known to correspond to the concentration of the substance in the workplace air are indicative of additional exposure by other routes, usually percutaneous.

For this reason the Commission investigates for carcinogenic substances the relationships between the concentration of the carcinogen in the workplace air and that of the substance or its metabolites in biological material (“Expositionäquivalente für krebszeugende Arbeitsstoffe”, EKA: exposure equivalents for carcinogenic substances). From these relationships, the body burden which results from uptake of the substance exclusively by inhalation may be determined.

In addition, the considerations expressed in Section XI “Correlations between MAK and BAT Values” apply to substances which may be absorbed percutaneously (“H” after the name of the substance indicates danger from percutaneous absorption).

1 Carcinogenic substances and suspected carcinogens for which correlations (“exposure equivalents for carcinogenic substances”, EKA) can be evaluated:

(printed in italics: Equivalent Values according to ERB (=exposure-risk relationships as defined in “Risk-related concept of measures for activities involving carcinogenic hazardous substances (TRGS 910)”)

**Acrylamide [79-06-1] H**

| Air Acrylamide [mg/m³] | Sampling time: after exposure for at least 3 months erythrocyte fraction of whole blood 
| N-(2-Carbonamideethyl)valine [pmol/g globin] |
|----------------------|------------------------------------------------|
| 0.035                | 200                                           |
| 0.07                 | 400                                           |
| 0.10                 | 550                                           |
| 0.15                 | 800                                           |
| 0.30                 | 1600                                          |
### Acrylnitril [107-13-1] H

<table>
<thead>
<tr>
<th>Air Acrylonitrile</th>
<th>Erythrocyte fraction of whole blood</th>
<th>Sampling time:</th>
</tr>
</thead>
<tbody>
<tr>
<td>[ml/m³]</td>
<td>[mg/m³]</td>
<td>N-(2-Cyanoethyl)valine [pmol/g globin]</td>
</tr>
<tr>
<td>0.12</td>
<td>0.26</td>
<td>650</td>
</tr>
<tr>
<td>0.23</td>
<td>0.5</td>
<td>1400</td>
</tr>
<tr>
<td>0.45</td>
<td>1</td>
<td>2450</td>
</tr>
<tr>
<td>1.2</td>
<td>2.6</td>
<td>6500</td>
</tr>
<tr>
<td>3</td>
<td>7</td>
<td>17000</td>
</tr>
</tbody>
</table>

### Alkali chromates (Cr(VI))

<table>
<thead>
<tr>
<th>Air</th>
<th>Erythrocyte fraction of whole blood*</th>
<th>CrO₃</th>
<th>Chromium [μg/l whole blood]</th>
<th>Urine**</th>
</tr>
</thead>
<tbody>
<tr>
<td>[mg/m³]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.03</td>
<td>9</td>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.05</td>
<td>17</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.08</td>
<td>25</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.10</td>
<td>35</td>
<td>40</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* not applicable for exposure to welding fumes
** also applicable for exposure to welding fumes

### Arsenic [7440-38-2] and inorganic arsenic compounds (apart from arsine)

H metallic arsenic and gallium arsenide are not designated with ‘H’

<table>
<thead>
<tr>
<th>Air Arsenic and inorganic arsenic compounds (apart from arsine)</th>
<th>Urine Σ Arsenic(III), arsenic(V), monomethylarsonic acid and dimethylarsinic acid [μg/l]</th>
<th>Sampling time:</th>
</tr>
</thead>
<tbody>
<tr>
<td>[mg/m³]</td>
<td></td>
<td>end of exposure or end of shift; long-term exposure: at the end of the shift after several shifts</td>
</tr>
<tr>
<td>0.001</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>0.005</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>0.01</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>0.05</td>
<td>90</td>
<td></td>
</tr>
<tr>
<td>0.10</td>
<td>130</td>
<td></td>
</tr>
</tbody>
</table>
### Benzene [71-43-2] H

<table>
<thead>
<tr>
<th>Air Benzene</th>
<th></th>
<th></th>
<th>Urine trans, trans-Muconic acid [μg/g creatinine]</th>
<th>Benzene [μg/l]</th>
</tr>
</thead>
<tbody>
<tr>
<td>[ml/m³]</td>
<td>[mg/m³]</td>
<td>S-Phenyl-mercapturic acid [μg/g creatinine]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.03</td>
<td>0.1</td>
<td>1.5*</td>
<td></td>
<td>0.5*</td>
</tr>
<tr>
<td>0.06</td>
<td>0.2</td>
<td>3*</td>
<td></td>
<td>0.8*</td>
</tr>
<tr>
<td>0.15</td>
<td>0.5</td>
<td>5</td>
<td></td>
<td>1.5</td>
</tr>
<tr>
<td>0.3</td>
<td>1.0</td>
<td>12</td>
<td>300</td>
<td>2.75</td>
</tr>
<tr>
<td>0.6</td>
<td>2.0</td>
<td>25</td>
<td>500</td>
<td>5.0</td>
</tr>
<tr>
<td>1.0</td>
<td>3.3</td>
<td>45</td>
<td>750</td>
<td>7.5</td>
</tr>
<tr>
<td>2.0</td>
<td>6.5</td>
<td>90</td>
<td>1200</td>
<td>12.5</td>
</tr>
</tbody>
</table>

* evaluated for non-smokers

### 1-Bromopropane [106-94-5] H

<table>
<thead>
<tr>
<th>Air 1-Bromopropane</th>
<th></th>
<th>S(n-Propyl)mercapturic acid [mg/g creatinine]</th>
</tr>
</thead>
<tbody>
<tr>
<td>[ml/m³]</td>
<td>[mg/m³]</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>5</td>
<td>2.0</td>
</tr>
<tr>
<td>2</td>
<td>10</td>
<td>3.4</td>
</tr>
<tr>
<td>5</td>
<td>25</td>
<td>7.0</td>
</tr>
<tr>
<td>10</td>
<td>50</td>
<td>12.0</td>
</tr>
<tr>
<td>20</td>
<td>101</td>
<td>20.0</td>
</tr>
</tbody>
</table>

### 1,3-Butadiene [106-99-0]

<table>
<thead>
<tr>
<th>Air 1,3-Butadiene</th>
<th></th>
<th>3,4-Dihydroxybutyl mercapturic acid [μg/g creatinine]</th>
<th>2-Hydroxy-3-butenyl mercapturic acid [μg/g creatinine]</th>
</tr>
</thead>
<tbody>
<tr>
<td>[ml/m³]</td>
<td>[mg/m³]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.2</td>
<td>0.45</td>
<td>600</td>
<td>10</td>
</tr>
<tr>
<td>0.5</td>
<td>1.1</td>
<td>1000</td>
<td>20</td>
</tr>
<tr>
<td>1</td>
<td>2.3</td>
<td>1600</td>
<td>40</td>
</tr>
<tr>
<td>2</td>
<td>4.5</td>
<td>2900</td>
<td>80</td>
</tr>
<tr>
<td>3</td>
<td>6.8</td>
<td>4200</td>
<td>120</td>
</tr>
</tbody>
</table>

**) synonym for N-acetyl-S-(3,4-dihydroxybutyl)-L-cysteine

***) synonym for N-acetyl-S-(2-hydroxy-3-butenyl)-L-cysteine
### 1-Chlor-2,3-epoxypropane (Epichlorohydrin) [106-89-8] H

<table>
<thead>
<tr>
<th>Air 1-Chlor-2,3-epoxypropane</th>
<th>Urine S-(3-Chloro-2-hydroxypropyl)mercapturic acid</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-Chlor-2,3-epoxypropane [ml/m³]</td>
<td>S-(3-Chloro-2-hydroxypropyl)mercapturic acid [mg/g creatinine]</td>
</tr>
<tr>
<td>[mg/m³]</td>
<td></td>
</tr>
<tr>
<td>0.06</td>
<td>0.23</td>
</tr>
<tr>
<td>0.13</td>
<td>0.5</td>
</tr>
<tr>
<td>0.26</td>
<td>1</td>
</tr>
<tr>
<td>0.6</td>
<td>2.3</td>
</tr>
<tr>
<td>2</td>
<td>8</td>
</tr>
</tbody>
</table>

### Cobalt [7440-48-4] and cobalt compounds H

<table>
<thead>
<tr>
<th>Air Cobalt</th>
<th>Urine Cobalt</th>
</tr>
</thead>
<tbody>
<tr>
<td>[mg/m³]</td>
<td>[μg/l]</td>
</tr>
<tr>
<td>0.005</td>
<td>3</td>
</tr>
<tr>
<td>0.010</td>
<td>6</td>
</tr>
<tr>
<td>0.025</td>
<td>15</td>
</tr>
<tr>
<td>0.050</td>
<td>30</td>
</tr>
<tr>
<td>0.100</td>
<td>60</td>
</tr>
<tr>
<td>0.500</td>
<td>300</td>
</tr>
</tbody>
</table>

### Cyclohexanone [108-94-1] H

<table>
<thead>
<tr>
<th>Air Cyclohexanone</th>
<th>Urine 1,2-Cyclohexanediol (after hydrolysis)</th>
<th>Urine Cyclohexanol (after hydrolysis)</th>
</tr>
</thead>
<tbody>
<tr>
<td>[ml/m³]</td>
<td>[mg/m³]</td>
<td>[mg/l]</td>
</tr>
<tr>
<td>10</td>
<td>40</td>
<td>50</td>
</tr>
<tr>
<td>20</td>
<td>80</td>
<td>100</td>
</tr>
<tr>
<td>50</td>
<td>200</td>
<td>250</td>
</tr>
</tbody>
</table>
### 1,4-Dichlorobenzene [106-46-7] H

<table>
<thead>
<tr>
<th>Air 1,4-Dichlorobenzene [ml/m$^3$]</th>
<th>Urine 2,5-Dichlorophenol (after hydrolysis) [mg/l]</th>
</tr>
</thead>
<tbody>
<tr>
<td>[mg/m$^3$]</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td>5</td>
<td>20</td>
</tr>
<tr>
<td>10</td>
<td>30</td>
</tr>
<tr>
<td>20</td>
<td>60</td>
</tr>
<tr>
<td>30</td>
<td>90</td>
</tr>
</tbody>
</table>

Sampling time: end of exposure or end of shift; long-term exposure: at the end of the shift after several shifts.

### Dichloromethane [75-09-2] H

<table>
<thead>
<tr>
<th>Air Dichloromethane [ml/m$^3$]</th>
<th>Whole blood Dichloromethane [mg/l]</th>
</tr>
</thead>
<tbody>
<tr>
<td>[mg/m$^3$]</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>0.1</td>
</tr>
<tr>
<td>20</td>
<td>0.2</td>
</tr>
<tr>
<td>50</td>
<td>0.5</td>
</tr>
<tr>
<td>100</td>
<td>1</td>
</tr>
</tbody>
</table>

Sampling time: during exposure, at least 2 hours after beginning of exposure.

### Dimethyl sulfate [77-78-1] H

<table>
<thead>
<tr>
<th>Air Dimethyl sulfate [ml/m$^3$]</th>
<th>Erythrocyte fraction of whole blood N-Methylvaline [μg/l whole blood]</th>
</tr>
</thead>
<tbody>
<tr>
<td>[mg/m$^3$]</td>
<td></td>
</tr>
<tr>
<td>0.002</td>
<td>10</td>
</tr>
<tr>
<td>0.006</td>
<td>13</td>
</tr>
<tr>
<td>0.01</td>
<td>17</td>
</tr>
<tr>
<td>0.04</td>
<td>40</td>
</tr>
</tbody>
</table>

Sampling time: after exposure for at least 3 months.
### 1,2-Epoxypropane [75-56-9]

<table>
<thead>
<tr>
<th>Air 1,2-Epoxypropane</th>
<th>Erythrocyte fraction of whole blood</th>
<th>N-(2-Hydroxypropyl)valine</th>
<th>[pmol/g globin]</th>
</tr>
</thead>
<tbody>
<tr>
<td>[ml/m³]</td>
<td>[mg/m³]</td>
<td>[ml/m³]</td>
<td>[mg/m³]</td>
</tr>
<tr>
<td>0.5</td>
<td>1.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.0</td>
<td>2.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.0</td>
<td>4.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.5</td>
<td>6.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Sampling time:**
- after exposure for at least 3 months

### Ethylbenzene [100-41-4] H

<table>
<thead>
<tr>
<th>Air Ethylbenzene</th>
<th>Urine Mandelic acid plus phenyl glyoxylic acid</th>
<th>[mg/g creatinine]</th>
</tr>
</thead>
<tbody>
<tr>
<td>[ml/m³]</td>
<td>[μg/l whole blood]</td>
<td>[mg/g creatinine]</td>
</tr>
<tr>
<td>10</td>
<td>29</td>
<td>44</td>
</tr>
<tr>
<td>20</td>
<td>59</td>
<td>88</td>
</tr>
<tr>
<td>25</td>
<td>110</td>
<td>110</td>
</tr>
<tr>
<td>50</td>
<td>220</td>
<td>220</td>
</tr>
<tr>
<td>100</td>
<td>440</td>
<td>440</td>
</tr>
</tbody>
</table>

**Sampling time:**
- end of exposure or end of shift

### Ethylene [74-85-1]

<table>
<thead>
<tr>
<th>Air Ethylene</th>
<th>Erythrocyte fraction of whole blood Hydroxyethylvaline</th>
<th>[μg/l whole blood]</th>
</tr>
</thead>
<tbody>
<tr>
<td>[ml/m³]</td>
<td>[mg/m³]</td>
<td>[μg/l whole blood]</td>
</tr>
<tr>
<td>25</td>
<td>29</td>
<td>25</td>
</tr>
<tr>
<td>50</td>
<td>59</td>
<td>50</td>
</tr>
<tr>
<td>100</td>
<td>117</td>
<td>100</td>
</tr>
</tbody>
</table>

**Sampling time:**
- after exposure for at least 3 months

### Ethylene oxide [75-21-8] H

<table>
<thead>
<tr>
<th>Air Ethylene oxide</th>
<th>Erythrocyte fraction of whole blood Hydroxyethylvaline</th>
<th>[µg/l whole blood]</th>
</tr>
</thead>
<tbody>
<tr>
<td>[ml/m³]</td>
<td>[mg/m³]</td>
<td>[µg/l whole blood]</td>
</tr>
<tr>
<td>0.5</td>
<td>0.92</td>
<td>0.92</td>
</tr>
<tr>
<td>1</td>
<td>1.83</td>
<td>1.83</td>
</tr>
<tr>
<td>2</td>
<td>3.66</td>
<td>3.66</td>
</tr>
</tbody>
</table>
### Hydrazine [302-01-2] H

<table>
<thead>
<tr>
<th>Air Hydrazine [ml/m³]</th>
<th>Urine Hydrazine [μg/g creatinine]</th>
<th>Plasma Hydrazine [µg/l]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.01</td>
<td>0.013</td>
<td>35</td>
</tr>
<tr>
<td>0.017</td>
<td>0.022</td>
<td>62</td>
</tr>
<tr>
<td>0.02</td>
<td>0.026</td>
<td>70</td>
</tr>
<tr>
<td>0.025</td>
<td>0.033</td>
<td>95</td>
</tr>
<tr>
<td>0.05</td>
<td>0.065</td>
<td>200</td>
</tr>
<tr>
<td>0.08</td>
<td>0.104</td>
<td>300</td>
</tr>
<tr>
<td>0.10</td>
<td>0.130</td>
<td>380</td>
</tr>
</tbody>
</table>

Sampling time: end of exposure or end of shift

### Nickel [7440-02-0] (nickel metal, nickel oxide, nickel carbonate, nickel sulfide, sulfidic ores)

<table>
<thead>
<tr>
<th>Air Nickel [mg/m³]</th>
<th>Urine Nickel [µg/l]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.10</td>
<td>15</td>
</tr>
<tr>
<td>0.30</td>
<td>30</td>
</tr>
<tr>
<td>0.50</td>
<td>45</td>
</tr>
</tbody>
</table>

Sampling time: long-term exposure: at the end of the shift after several shifts

### Polycyclic aromatic hydrocarbons (PAH) H

<table>
<thead>
<tr>
<th>Air Benzo[a]pyrene [µg/m³]</th>
<th>Urine 3-Hydroxybenzo[a]pyrene (after hydrolysis) [ng/g creatinine]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.07</td>
<td>0.7</td>
</tr>
<tr>
<td>0.35</td>
<td>2</td>
</tr>
<tr>
<td>0.7</td>
<td>3.5</td>
</tr>
<tr>
<td>1.0</td>
<td>5</td>
</tr>
<tr>
<td>1.5</td>
<td>7</td>
</tr>
</tbody>
</table>

Sampling time: at the beginning of the next shift
### Tetrachloroethylene \([127-18-4]\) H

<table>
<thead>
<tr>
<th>Air</th>
<th>Tetrachloroethylene [ml/m³]</th>
<th>Tetrachloroethylene [mg/m³]</th>
<th>Tetrachloroethylene [μg/l]</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>21</td>
<td></td>
<td>60</td>
</tr>
<tr>
<td>10</td>
<td>69</td>
<td></td>
<td>200</td>
</tr>
<tr>
<td>20</td>
<td>138</td>
<td></td>
<td>400</td>
</tr>
<tr>
<td>30</td>
<td>206</td>
<td></td>
<td>600</td>
</tr>
<tr>
<td>50</td>
<td>344</td>
<td></td>
<td>1000</td>
</tr>
</tbody>
</table>

### Toluene-2,4-diamine \([95-80-7]\) H

<table>
<thead>
<tr>
<th>Air</th>
<th>Toluene-2,4-diamine [mg/m³]</th>
<th>Toluene-2,4-diamine (after hydrolysis) [μg/g creatinine]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0025</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>0.01</td>
<td></td>
<td>13</td>
</tr>
<tr>
<td>0.017</td>
<td></td>
<td>20</td>
</tr>
<tr>
<td>0.035</td>
<td></td>
<td>37</td>
</tr>
<tr>
<td>0.100*</td>
<td></td>
<td>100*</td>
</tr>
</tbody>
</table>

* values obtained by extrapolation

### Trichloroethylene \([79-01-6]\) H

<table>
<thead>
<tr>
<th>Air</th>
<th>Trichloroethylene [ml/m³]</th>
<th>Trichloroacetic acid [mg/l]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.6</td>
<td>3.3</td>
<td>1.2</td>
</tr>
<tr>
<td>6</td>
<td>33</td>
<td>12</td>
</tr>
<tr>
<td>10</td>
<td>55</td>
<td>20</td>
</tr>
<tr>
<td>11</td>
<td>60</td>
<td>22</td>
</tr>
<tr>
<td>15</td>
<td>82</td>
<td>30</td>
</tr>
<tr>
<td>20</td>
<td>109</td>
<td>40</td>
</tr>
<tr>
<td>25</td>
<td>137</td>
<td>50</td>
</tr>
</tbody>
</table>
Vanadium [7440-62-2] and its inorganic compounds

<table>
<thead>
<tr>
<th>Air Vanadium [mg/m³]</th>
<th>Urine Vanadium [μg/g creatinine]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.025</td>
<td>35</td>
</tr>
<tr>
<td>0.030</td>
<td>42</td>
</tr>
<tr>
<td>0.050</td>
<td>70</td>
</tr>
<tr>
<td>0.100</td>
<td>140</td>
</tr>
</tbody>
</table>

Sampling time:
end of exposure or end of shift;
long-term exposure: at the end of the shift after several shifts

Vinyl chloride [75-01-4]

<table>
<thead>
<tr>
<th>Air Vinyl chloride [ml/m³]</th>
<th>Urine Thiodiglycolic acid [mg/24 h]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.8</td>
</tr>
<tr>
<td>2</td>
<td>2.4</td>
</tr>
<tr>
<td>4</td>
<td>4.5</td>
</tr>
<tr>
<td>8</td>
<td>8.2</td>
</tr>
<tr>
<td>16</td>
<td>10.6</td>
</tr>
</tbody>
</table>

Sampling time:
long-term exposure: at the end of the shift after several shifts

2 Carcinogenic substances and suspected carcinogens for which correlations (“exposure equivalents for carcinogenic materials”, EKA) cannot be evaluated, or only evaluated incompletely, but which are documented in “Biologische Arbeitsstoff-Toleranzwerte (BAT-Werte), Expositionsäquivalente für krebsverursachende Arbeitsstoffe (EKA), Biologische Leitwerte (BLW) und Biologische Arbeitsstoff-Referenzwerte (BAR) – Arbeitsmedizinisch-toxikologische Begründungen”:

- 4-Aminobiphenyl [92-67-1]
- Antimony [7440-36-0] and its inorganic compounds including stibine [7803-52-3]
- Benzidine [92-87-5]
- Beryllium [7440-41-7] and its inorganic compounds
- Mercury, organic compounds
- Methyl bromide [74-83-9]
- 2-Naphthylamine [91-59-8]

★ Nickel (easily soluble nickel compounds, e.g. nickel acetate and similar soluble salts, nickel chloride, nickel sulfate)
- Pentachlorophenol [87-86-5]

XIV BLW

The BLW ("Biological guidance value") is the amount of a chemical substance or its metabolites or the deviation from the norm of biological parameters induced by the substance in exposed humans which serves as an indicator for necessary protective measures. BLWs are assigned only for hazardous materials for which the available toxicological or occupational-medical data are insufficient for the establishment of BAT values (i.e. for carcinogenic substances and suspected carcinogens in the categories 1 to 3 and for non-carcinogens for which the toxicological data are inadequate).

BLW values are generally established on the assumption that persons are exposed at work for at most 8 hours daily and 40 hours weekly during their working lives.

The BLW is based on occupational-medical information as to the effects of handling the hazardous material together with toxicological data. Since observance of the BLW does not exclude a risk of adverse effects on health, it is necessary to extend our knowledge of the relationships between exposure to the substance, the systemic dose and the resulting risks for health so that BAT values may be derived. The BLW values are intended to advance this aim by providing a basis for biomonitoring of exposed persons by the physician. By continual improvement of the industrial situation, occupational hygiene and the protective aspects of work planning, concentrations as far as possible below the BLW should be attained.

1 Substances for which BLW can be derived:

- Acrylamide [79-06-1]
- Aniline [62-53-3]
- Arsenic [7440-38-2] and inorganic arsenic compounds apart from arsine
- Bisphenol A (4,4'-Isopropylidenediphenol) [80-05-7]
- Cobalt [7440-48-4] and cobalt compounds
- Di(2-ethylhexyl)phthalate (DEHP) [117-81-7]
- Lead [7439-92-1] and its compounds (except lead arsenate, lead chromate and alkyl lead compounds)
- for women >45 years and for men
- Methyl bromide [74-83-9]
- 4,4'-Methylene diphenyl diisocyanate (MDI) [101-68-8] (inhalable fraction)
- Nitrobenzene [98-95-3]
- Phenol [108-95-2]

2 For the substances listed below, there is at present insufficient data for the derivation of a BLW; however, documentation for these substances has been published in “Biologische Arbeitsstoff-Toleranzwerte (BAT-Werte), Expositionssäquivalente für krebserzeugende Arbeitsstoffe (EKA), Biologische Leitwerte (BLW) und Biologische Arbeitsstoff-Referenzwerte (BAR) – Arbeitsmedizinisch-toxikologische Begründungen”\(^{49}\)

- 4-Aminobiphenyl [92-67-1]
- Cadmium [7440-43-9] and its inorganic compounds

Cresol (all isomers) [1319-77-3]: o-cresol [95-48-7], m-cresol [108-39-4], p-cresol [106-44-5]
4,4′-Diaminodiphenylmethane [101-77-9]
Lead [7439-92-1] and its compounds (except lead arsenate, lead chromate and alkyl lead compounds)
for women ≤ 45 years
1,5-Naphthylene diisocyanate [3173-72-6]
Nitroglycerin [55-63-0]
XV BAR

BAR (“Biological reference values”) describe the background level of a substance which is present concurrently at a particular time in a reference population of persons of working age who are not occupationally exposed to this substance. The BAR are based on the 95th percentile without regarding effects on health. It must be taken into account that the reference level of the background exposure can be influenced by such factors as age, sex, social status, residential environment, life style and geographical region.

The reference level for a substance or its metabolite in biological material is derived with the help of the measured level in a random sample from a defined population group.

Occupational exposure can be assessed by comparing biomonitoring values in occupationally exposed persons with the BAR.

1 Substances for which BAR can be derived:

- Acrolein [107-02-8]
- Acrylamide [79-06-1]
- Acrylonitrile [107-13-1]
- Aluminium [7429-90-5]
- 4-Aminobiphenyl [92-67-1]
- Antimony [7440-36-0] and its inorganic compounds including stibine [7803-52-3]
- Arsenic [7440-38-2] and inorganic arsenic compounds apart from arsine
- Barium compounds (soluble) (as Ba [7440-39-3])
- Benzene [71-43-2]
- Beryllium [7440-41-7] and its inorganic compounds
- Bisphenol S [80-09-1]
- 1,3-Butadiene [106-99-0]
- Cadmium [7440-43-9] and its inorganic compounds
- Chlorinated biphenyls [53469-21-9]
- Chloroprene [126-99-8]
- Chromium [7440-47-3] and its compounds
- Cobalt [7440-48-4] and cobalt compounds
- 4,4’-Diaminodiphenylmethane (MOCA) [101-14-4]
- Molybdenum [7439-98-7] and its compounds
- Naphthalene [91-20-3]
- Nickel [7440-02-0] and its compounds
- Polycyclic aromatic hydrocarbons (PAH)
- Selenium [7782-49-2] and its inorganic compounds
- o-Toluidine [95-53-4]
- Tributyl phosphate [126-73-8]
- Trichloroethylene [79-01-6]
2,4,6-Trinitrotoluene [118-96-7] (and isomers in technical mixtures)
Vinyl chloride [75-01-4]

For the substances listed below, there is at present insufficient data for the derivation of a BAR; however, documentation for these substances has been published in “Biologische Arbeitsstoff-Toleranzwerte (BAT-Werte), Expositionsäquivalente für krebserzeugende Arbeitsstoffe (EKA), Biologische Leitwerte (BLW) und Biologische Arbeitsstoff-Referenzwerte (BAR) – Arbeitsmedizinisch-toxikologische Begründungen”:

- Benzidine [92-87-5]
- Copper [7440-50-8] and its inorganic compounds
- 1,2-Dichloropropane [78-87-5]
- Gadolinium [7440-54-2]
- Iodine [7553-56-2] and inorganic iodides
- 2-Naphthylamine [91-59-8]
- Toluene-2,4-diamine [95-80-7]
- Toluene-2,4-diisocyanate [584-84-9]
- Tricresyl phosphate, sum of all o-isomers [78-30-8]
- Uranium [7440-61-1] and its hardly soluble inorganic compounds
- Uranium compounds, soluble inorganic

## CAS Number Index

CAS numbers of the substances listed in Sections II to XV and on the announcement list

<table>
<thead>
<tr>
<th>CAS number</th>
<th>Substance</th>
</tr>
</thead>
<tbody>
<tr>
<td>50-00-0</td>
<td>Formaldehyde</td>
</tr>
<tr>
<td>50-29-3</td>
<td>DDT (Dichlorodiphenyltrichloroethane)</td>
</tr>
<tr>
<td>50-32-8</td>
<td>Benz[a]pyrene</td>
</tr>
<tr>
<td>50-53-3</td>
<td>Chlorpromazine (2-Chloro-10-(3-dimethylaminopropyl)phenothiazine)</td>
</tr>
<tr>
<td>51-75-2</td>
<td>N-Methyl-bis(2-chloroethyl)amine (nitrogen mustard)</td>
</tr>
<tr>
<td>51-79-6</td>
<td>Carboxylic acid ethyl ester</td>
</tr>
<tr>
<td>52-51-7</td>
<td>2-Bromo-2-nitro-1,3-propanediol</td>
</tr>
<tr>
<td>53-70-3</td>
<td>Dibenzo[a,h]anthracene</td>
</tr>
<tr>
<td>54-11-5</td>
<td>Nicotine</td>
</tr>
<tr>
<td>54-64-8</td>
<td>Thimerosal</td>
</tr>
<tr>
<td>55-18-5</td>
<td>N-Nitrosodimethylamine</td>
</tr>
<tr>
<td>55-38-9</td>
<td>Fenthion</td>
</tr>
<tr>
<td>55-63-0</td>
<td>Nitroglycerin</td>
</tr>
<tr>
<td>56-23-5</td>
<td>Carbon tetrachloride</td>
</tr>
<tr>
<td>56-38-2</td>
<td>Parathion</td>
</tr>
<tr>
<td>56-55-3</td>
<td>Benzo[a]anthracene</td>
</tr>
<tr>
<td>56-81-5</td>
<td>Glycerol</td>
</tr>
<tr>
<td>57-10-3</td>
<td>Palmitic acid</td>
</tr>
<tr>
<td>57-11-4</td>
<td>Stearic acid</td>
</tr>
<tr>
<td>57-12-5</td>
<td>Cyanides</td>
</tr>
<tr>
<td>57-14-7</td>
<td>1,1-Dimethylhydrazine</td>
</tr>
<tr>
<td>57-24-9</td>
<td>Strychnine</td>
</tr>
<tr>
<td>57-55-6</td>
<td>Propylene glycol</td>
</tr>
<tr>
<td>57-57-8</td>
<td>β-Propiolactone</td>
</tr>
<tr>
<td>57-74-9</td>
<td>Chlordane</td>
</tr>
<tr>
<td>58-89-9</td>
<td>Lindane</td>
</tr>
<tr>
<td>59-50-7</td>
<td>p-Chloro-m-cresol</td>
</tr>
<tr>
<td>59-89-2</td>
<td>N-Nitrosomorpholine</td>
</tr>
<tr>
<td>60-00-4</td>
<td>Ethylenediaminetetraacetic acid (EDTA)</td>
</tr>
<tr>
<td>60-09-3</td>
<td>p-Aminoazobenzene</td>
</tr>
<tr>
<td>60-12-8</td>
<td>2-Phenyl-1-ethanol</td>
</tr>
<tr>
<td>60-29-7</td>
<td>Ethyl ether</td>
</tr>
<tr>
<td>60-34-4</td>
<td>Monomethylhydrazine</td>
</tr>
<tr>
<td>60-35-5</td>
<td>Acetamide</td>
</tr>
<tr>
<td>60-57-1</td>
<td>Dieldrin</td>
</tr>
<tr>
<td>61-82-5</td>
<td>Amitrole</td>
</tr>
<tr>
<td>62-23-7</td>
<td>4-Nitrobenzoic acid</td>
</tr>
<tr>
<td>62-53-3</td>
<td>Aniline</td>
</tr>
<tr>
<td>62-56-6</td>
<td>Thiourea</td>
</tr>
<tr>
<td>62-73-7</td>
<td>Dichlorvos</td>
</tr>
<tr>
<td>62-74-8</td>
<td>Sodium fluoroacetate</td>
</tr>
<tr>
<td>62-75-9</td>
<td>N-Nitrosodimethylamine</td>
</tr>
<tr>
<td>63-25-2</td>
<td>Carbaryl</td>
</tr>
<tr>
<td>64-17-5</td>
<td>Ethanol</td>
</tr>
<tr>
<td>64-18-6</td>
<td>Formic acid</td>
</tr>
<tr>
<td>64-19-7</td>
<td>Acetic acid</td>
</tr>
<tr>
<td>64-67-5</td>
<td>Diethyl sulfate</td>
</tr>
<tr>
<td>65-85-0</td>
<td>Benzoic acid</td>
</tr>
<tr>
<td>67-56-1</td>
<td>Methanol</td>
</tr>
<tr>
<td>67-63-0</td>
<td>Isopropyl alcohol</td>
</tr>
<tr>
<td>67-64-1</td>
<td>Acetone</td>
</tr>
</tbody>
</table>

*List of MAK and BAT Values 2020. DFG, Deutsche Forschungsgemeinschaft*

DOI: 10.34865/mbwl_2020_eng

German Medical Science | PUBLISSO 2020
<table>
<thead>
<tr>
<th>CAS number</th>
<th>Substance</th>
</tr>
</thead>
<tbody>
<tr>
<td>67-66-3</td>
<td>Chloroform</td>
</tr>
<tr>
<td>67-68-5</td>
<td>Dimethyl sulfoxide</td>
</tr>
<tr>
<td>67-72-1</td>
<td>Hexachloroethane</td>
</tr>
<tr>
<td>68-11-1</td>
<td>Thioglycolic acid</td>
</tr>
<tr>
<td>68-12-2</td>
<td>N,N-Dimethylformamide</td>
</tr>
<tr>
<td>71-36-3</td>
<td>n-Butyl alcohol</td>
</tr>
<tr>
<td>71-41-0</td>
<td>Pentanol (isomers): 1-Pentanol</td>
</tr>
<tr>
<td>71-43-2</td>
<td>Benzene</td>
</tr>
<tr>
<td>71-55-6</td>
<td>1,1,1-Trichloroethane</td>
</tr>
<tr>
<td>72-20-8</td>
<td>Endrin</td>
</tr>
<tr>
<td>72-43-5</td>
<td>Methoxychlor (DMDT)</td>
</tr>
<tr>
<td>74-11-3</td>
<td>Chlorobenzoic acid (all isomers): p-Chlorobenzoic acid</td>
</tr>
<tr>
<td>74-31-7</td>
<td>N,N-Diphenyl-p-phenylenediamine</td>
</tr>
<tr>
<td>74-83-9</td>
<td>Methyl bromide</td>
</tr>
<tr>
<td>74-85-1</td>
<td>Ethylene</td>
</tr>
<tr>
<td>74-87-3</td>
<td>Methyl chloride</td>
</tr>
<tr>
<td>74-88-4</td>
<td>Methyl iodide</td>
</tr>
<tr>
<td>74-89-5</td>
<td>Methylamine</td>
</tr>
<tr>
<td>74-90-8</td>
<td>Hydrogen cyanide</td>
</tr>
<tr>
<td>74-93-1</td>
<td>Methyl mercaptan</td>
</tr>
<tr>
<td>74-96-4</td>
<td>Bromoethane</td>
</tr>
<tr>
<td>74-97-5</td>
<td>Bromochloromethane</td>
</tr>
<tr>
<td>74-98-6</td>
<td>Propane</td>
</tr>
<tr>
<td>74-99-7</td>
<td>Methyl acetylene</td>
</tr>
<tr>
<td>75-00-3</td>
<td>Chloroethane</td>
</tr>
<tr>
<td>75-01-4</td>
<td>Vinyl chloride</td>
</tr>
<tr>
<td>75-04-7</td>
<td>Ethylamine</td>
</tr>
<tr>
<td>75-05-8</td>
<td>Acetonitrile</td>
</tr>
<tr>
<td>75-07-0</td>
<td>Acetaldehyde</td>
</tr>
<tr>
<td>75-08-1</td>
<td>Ethanethiol</td>
</tr>
<tr>
<td>75-09-2</td>
<td>Dichloromethane</td>
</tr>
<tr>
<td>75-12-7</td>
<td>Formamide</td>
</tr>
<tr>
<td>75-15-0</td>
<td>Carbon disulfide</td>
</tr>
<tr>
<td>75-18-3</td>
<td>Dimethyl sulfide</td>
</tr>
<tr>
<td>75-21-8</td>
<td>Ethylene oxide</td>
</tr>
<tr>
<td>75-25-2</td>
<td>Tribromomethane</td>
</tr>
<tr>
<td>75-27-4</td>
<td>Bromodichloromethane</td>
</tr>
<tr>
<td>75-28-5</td>
<td>Butane (both isomers): Isobutane</td>
</tr>
<tr>
<td>75-31-0</td>
<td>Isopropylamine</td>
</tr>
<tr>
<td>75-34-3</td>
<td>1,1-Dichloroethane</td>
</tr>
<tr>
<td>75-35-4</td>
<td>Vinylidene chloride</td>
</tr>
<tr>
<td>75-38-7</td>
<td>1,1-Difluoroethylene</td>
</tr>
<tr>
<td>75-43-4</td>
<td>Dichlorofluoromethane (FC-21)</td>
</tr>
<tr>
<td>75-44-5</td>
<td>Phosgene</td>
</tr>
<tr>
<td>75-45-6</td>
<td>Chlorodifluoromethane (FC-22)</td>
</tr>
<tr>
<td>75-50-3</td>
<td>Trimethylamine</td>
</tr>
<tr>
<td>75-52-5</td>
<td>Nitromethane</td>
</tr>
<tr>
<td>75-55-8</td>
<td>Propylene imine</td>
</tr>
<tr>
<td>75-56-9</td>
<td>1,2-Epoxypropane</td>
</tr>
<tr>
<td>75-61-6</td>
<td>Dibromodifluoromethane</td>
</tr>
<tr>
<td>75-63-8</td>
<td>Bromotrifluoromethane</td>
</tr>
<tr>
<td>75-64-9</td>
<td>tert-Butylamine</td>
</tr>
<tr>
<td>75-65-0</td>
<td>tert-Butyl alcohol</td>
</tr>
<tr>
<td>75-66-1</td>
<td>2-Methyl-2-propanethiol</td>
</tr>
<tr>
<td>75-68-3</td>
<td>1-Chloro-1,1-difluoroethane (FC-142b)</td>
</tr>
<tr>
<td>75-69-4</td>
<td>Trichlorofluoromethane (FC-11)</td>
</tr>
<tr>
<td>CAS number</td>
<td>Substance</td>
</tr>
<tr>
<td>------------</td>
<td>---------------------------------------------------------------------------</td>
</tr>
<tr>
<td>75-71-8</td>
<td>Dichlorodifluoromethane (FC-12)</td>
</tr>
<tr>
<td>75-72-9</td>
<td>Chlorotrifluoromethane (FC-13)</td>
</tr>
<tr>
<td>75-74-1</td>
<td>Tetramethyllead</td>
</tr>
<tr>
<td>75-83-2</td>
<td>Hexane (all isomers except n-Hexane) and Methylcyclopentane: 2,2-Dimethylbutane</td>
</tr>
<tr>
<td>75-84-3</td>
<td>Pentanol (isomers): 2,2-Dimethyl-1-propanol</td>
</tr>
<tr>
<td>75-85-4</td>
<td>Pentanol (isomers): 2-Methyl-2-butanol</td>
</tr>
<tr>
<td>75-91-2</td>
<td>tert-Butyl hydroperoxide</td>
</tr>
<tr>
<td>75-99-0</td>
<td>2,2-Dichloropropionic acid</td>
</tr>
<tr>
<td>76-01-7</td>
<td>Pentachloroethane</td>
</tr>
<tr>
<td>76-03-9</td>
<td>Trichloroacetic acid</td>
</tr>
<tr>
<td>76-06-2</td>
<td>Chloropicrin</td>
</tr>
<tr>
<td>76-11-9</td>
<td>1,1,2-Tetrachloro-2,2-difluoroethane (FC-112a)</td>
</tr>
<tr>
<td>76-12-0</td>
<td>1,1,2,2-Tetrachloro-1,2-difluoroethane (FC-112)</td>
</tr>
<tr>
<td>76-13-1</td>
<td>1,1,2-Trichloro-1,2,2-trifluoroethane (FC-113)</td>
</tr>
<tr>
<td>76-14-2</td>
<td>1,2-Dichloro-1,1,2,2-tetrafluoroethane (FC-114)</td>
</tr>
<tr>
<td>76-22-2</td>
<td>Camphor</td>
</tr>
<tr>
<td>76-44-8</td>
<td>Heptachlor</td>
</tr>
<tr>
<td>77-47-4</td>
<td>Hexachlorocyclopentadiene</td>
</tr>
<tr>
<td>77-73-6</td>
<td>Dicyclopentadiene</td>
</tr>
<tr>
<td>77-78-1</td>
<td>Dimethyl sulfate</td>
</tr>
<tr>
<td>77-92-9</td>
<td>Citric acid</td>
</tr>
<tr>
<td>78-00-2</td>
<td>Tetraethyllead</td>
</tr>
<tr>
<td>78-10-4</td>
<td>Silicic acid tetraethyl ester</td>
</tr>
<tr>
<td>78-18-2</td>
<td>1-Hydroxy-1′-hydroperoxydicyclosyl peroxide</td>
</tr>
<tr>
<td>78-30-8</td>
<td>Tricresyl phosphate, sum of all α-isomers</td>
</tr>
<tr>
<td>78-32-0</td>
<td>Tricresyl phosphate, isomers, “free of α-isomers”</td>
</tr>
<tr>
<td>78-59-1</td>
<td>Isophorone</td>
</tr>
<tr>
<td>78-78-4</td>
<td>Pentane (all isomers): Isopentane</td>
</tr>
<tr>
<td>78-79-5</td>
<td>Isoprene (2-Methyl-1,3-butadiene)</td>
</tr>
<tr>
<td>78-81-9</td>
<td>iso-Butylamine</td>
</tr>
<tr>
<td>78-83-1</td>
<td>Isobutyl alcohol</td>
</tr>
<tr>
<td>78-87-5</td>
<td>1,2-Dichloropropane</td>
</tr>
<tr>
<td>78-92-2</td>
<td>sec-Butyl alcohol</td>
</tr>
<tr>
<td>78-93-3</td>
<td>2-Butanone</td>
</tr>
<tr>
<td>78-94-4</td>
<td>Methyl vinyl ketone</td>
</tr>
<tr>
<td>78-96-6</td>
<td>1-Amino-2-propanol</td>
</tr>
<tr>
<td>79-00-5</td>
<td>1,1,2-Trichloroethane</td>
</tr>
<tr>
<td>79-01-6</td>
<td>Trichloroethylene</td>
</tr>
<tr>
<td>79-04-9</td>
<td>Chloroacetyl chloride</td>
</tr>
<tr>
<td>79-06-1</td>
<td>Acrylamide</td>
</tr>
<tr>
<td>79-07-2</td>
<td>2-Chloroacetamide</td>
</tr>
<tr>
<td>79-09-4</td>
<td>Propionic acid</td>
</tr>
<tr>
<td>79-10-7</td>
<td>Acrylic acid</td>
</tr>
<tr>
<td>79-11-8</td>
<td>Monochloroacetic acid</td>
</tr>
<tr>
<td>79-20-9</td>
<td>Methyl acetate</td>
</tr>
<tr>
<td>79-21-0</td>
<td>Peracetic acid</td>
</tr>
<tr>
<td>79-22-1</td>
<td>Chloroformic acid methyl ester</td>
</tr>
<tr>
<td>79-24-3</td>
<td>Nitroethane</td>
</tr>
<tr>
<td>79-27-6</td>
<td>1,1,2,2-Tetabromoethane</td>
</tr>
<tr>
<td>79-29-8</td>
<td>Hexane (all isomers except n-Hexane) and Methylcyclopentane: 2,3-Dimethylbutane</td>
</tr>
<tr>
<td>79-34-5</td>
<td>1,1,2,2-Tetrachloroethane</td>
</tr>
<tr>
<td>79-41-4</td>
<td>Methacrylic acid</td>
</tr>
<tr>
<td>79-43-6</td>
<td>Dichloroacetic acid</td>
</tr>
<tr>
<td>79-44-7</td>
<td>Dimethylcarbamoyl chloride</td>
</tr>
<tr>
<td>79-46-9</td>
<td>2-Nitropropane</td>
</tr>
<tr>
<td>79-94-7</td>
<td>Tetrabromobisphenol A (Announcement list)</td>
</tr>
<tr>
<td>CAS number</td>
<td>Substance</td>
</tr>
<tr>
<td>------------</td>
<td>-----------</td>
</tr>
<tr>
<td>80-05-7</td>
<td>Bisphenol A</td>
</tr>
<tr>
<td>80-09-1</td>
<td>Bisphenol S</td>
</tr>
<tr>
<td>80-15-9</td>
<td>α,α-Dimethylbenzyl hydroperoxide</td>
</tr>
<tr>
<td>80-62-6</td>
<td>Methacrylic acid methyl ester</td>
</tr>
<tr>
<td>81-81-2</td>
<td>Warfarin</td>
</tr>
<tr>
<td>81-84-5</td>
<td>1,8-Naphthalic anhydride</td>
</tr>
<tr>
<td>83-79-4</td>
<td>Rotenone</td>
</tr>
<tr>
<td>84-74-2</td>
<td>Di-n-butyl phthalate</td>
</tr>
<tr>
<td>85-01-8</td>
<td>Phenanthrene</td>
</tr>
<tr>
<td>85-42-7</td>
<td>Hexahydropthalic anhydride</td>
</tr>
<tr>
<td>85-44-9</td>
<td>Phthalic anhydride</td>
</tr>
<tr>
<td>85-68-7</td>
<td>Benzylbutyl phthalate</td>
</tr>
<tr>
<td>86-30-6</td>
<td>N-Nitrosodiphenylaniline</td>
</tr>
<tr>
<td>86-50-0</td>
<td>Azinphos-methyl</td>
</tr>
<tr>
<td>86-57-7</td>
<td>1-Nitronaphthalene</td>
</tr>
<tr>
<td>86-88-4</td>
<td>1-Naphthylthiourea</td>
</tr>
<tr>
<td>87-59-2</td>
<td>Xylidine: 2,3-Xylidine</td>
</tr>
<tr>
<td>87-61-6</td>
<td>1,2,3-Trichlorobenzene</td>
</tr>
<tr>
<td>87-62-7</td>
<td>2,6-Xylidine</td>
</tr>
<tr>
<td>87-68-3</td>
<td>Hexachloro-1,3-butadiene</td>
</tr>
<tr>
<td>87-69-4</td>
<td>Tartaric acid</td>
</tr>
<tr>
<td>87-86-5</td>
<td>Pentachlorophenol</td>
</tr>
<tr>
<td>88-10-8</td>
<td>Diethylcarbamoyl chloride</td>
</tr>
<tr>
<td>88-12-0</td>
<td>N-Vinyl-2-pyrrolidone</td>
</tr>
<tr>
<td>88-72-2</td>
<td>2-Nitrotoluene</td>
</tr>
<tr>
<td>88-73-3</td>
<td>o-Chloronitrobenzene</td>
</tr>
<tr>
<td>88-88-0</td>
<td>Picryl chloride</td>
</tr>
<tr>
<td>88-89-1</td>
<td>Picric acid</td>
</tr>
<tr>
<td>88-99-3</td>
<td>o-Phthalic acid</td>
</tr>
<tr>
<td>90-04-0</td>
<td>o-Anisidine</td>
</tr>
<tr>
<td>90-30-2</td>
<td>N-Phenyl-1-naphthylamine</td>
</tr>
<tr>
<td>90-43-7</td>
<td>o-Phenylphenol</td>
</tr>
<tr>
<td>90-66-4</td>
<td>2,2'-Thiobis(4-methyl-6-tert-butylphenol) (Announcement list)</td>
</tr>
<tr>
<td>90-94-8</td>
<td>Michler's ketone</td>
</tr>
<tr>
<td>91-08-7</td>
<td>Toluene diisocyanates: Toluene-2,6-diisocyanate</td>
</tr>
<tr>
<td>91-17-8</td>
<td>Decahydropthalene</td>
</tr>
<tr>
<td>91-20-3</td>
<td>Naphthalene</td>
</tr>
<tr>
<td>91-23-6</td>
<td>2-Nitroanisole</td>
</tr>
<tr>
<td>91-29-2</td>
<td>4-Nitro-4'-aminodiphenylanilne-2-sulfonic acid</td>
</tr>
<tr>
<td>91-59-8</td>
<td>2-Naphthylamine</td>
</tr>
<tr>
<td>91-94-1</td>
<td>3,3'-Dichlorobenzidine</td>
</tr>
<tr>
<td>91-95-2</td>
<td>3,3'-Diaminobenzidine and its tetrahydrochloride</td>
</tr>
<tr>
<td>92-52-4</td>
<td>Biphenyl</td>
</tr>
<tr>
<td>92-67-1</td>
<td>4-Aminobiphenyl</td>
</tr>
<tr>
<td>92-70-6</td>
<td>3-Hydroxy-2-naphthalenecarboxylic acid</td>
</tr>
<tr>
<td>92-84-2</td>
<td>Phenothiazine</td>
</tr>
<tr>
<td>92-87-5</td>
<td>Benzidine</td>
</tr>
<tr>
<td>92-93-3</td>
<td>4-Nitrobiphenyl</td>
</tr>
<tr>
<td>93-76-5</td>
<td>2,4,5-Trichlorophenoxyacetic acid</td>
</tr>
<tr>
<td>94-36-0</td>
<td>Dibenzoyle peroxide</td>
</tr>
<tr>
<td>94-37-1</td>
<td>Dipentamethylenethiuram disulfide</td>
</tr>
<tr>
<td>94-75-7</td>
<td>2,4-Dichlorophenoxyacetic acid</td>
</tr>
<tr>
<td>94-96-2</td>
<td>2-Ethyl-1,3-hexanediol</td>
</tr>
<tr>
<td>95-14-7</td>
<td>1H-Benzotriazole</td>
</tr>
<tr>
<td>95-33-0</td>
<td>N-Cyclohexyl-2-benzothiazolesulfenamide</td>
</tr>
<tr>
<td>95-48-7</td>
<td>Cresol (all isomers): o-Cresol</td>
</tr>
<tr>
<td>CAS number</td>
<td>Substance</td>
</tr>
<tr>
<td>------------</td>
<td>---------------------------------------------------------------------------</td>
</tr>
<tr>
<td>95-50-1</td>
<td>1,2-Dichlorobenzene</td>
</tr>
<tr>
<td>95-51-2</td>
<td>o-Chloroaniline</td>
</tr>
<tr>
<td>95-53-4</td>
<td>o-Toluidine</td>
</tr>
<tr>
<td>95-54-5</td>
<td>o-Phenylenediamine</td>
</tr>
<tr>
<td>95-63-6</td>
<td>Trimethylbenzene (all isomers): 1,2,4-Trimethylbenzene</td>
</tr>
<tr>
<td>95-64-7</td>
<td>Xyldine: 3,4-Xyldine</td>
</tr>
<tr>
<td>95-68-1</td>
<td>2,4-Xyldine</td>
</tr>
<tr>
<td>95-69-2</td>
<td>4-Chloro-o-toluidine</td>
</tr>
<tr>
<td>95-70-5</td>
<td>Toluene-2,5-diamine</td>
</tr>
<tr>
<td>95-76-1</td>
<td>3,4-Dichloroaniline</td>
</tr>
<tr>
<td>95-78-3</td>
<td>Xyldine: 2,5-Xyldine</td>
</tr>
<tr>
<td>95-79-4</td>
<td>5-Chloro-o-toluidine</td>
</tr>
<tr>
<td>95-80-7</td>
<td>Toluene-2,4-diamine</td>
</tr>
<tr>
<td>95-95-4</td>
<td>2,4,5-Trichlorophenol</td>
</tr>
<tr>
<td>96-12-8</td>
<td>1,2-Dibromo-3-chloropropene</td>
</tr>
<tr>
<td>96-14-0</td>
<td>Hexane (all isomers except n-Hexane) and Methylcyclopentane: 3-Methylpentane</td>
</tr>
<tr>
<td>96-18-4</td>
<td>1,2,3-Trichloropropene</td>
</tr>
<tr>
<td>96-20-8</td>
<td>2-Aminobutanol</td>
</tr>
<tr>
<td>96-23-1</td>
<td>1,3-Dichloro-2-propanol</td>
</tr>
<tr>
<td>96-24-2</td>
<td>3-Chloro-1,2-propanediol (α-Chlorohydrin)</td>
</tr>
<tr>
<td>96-29-7</td>
<td>Butanone oxime</td>
</tr>
<tr>
<td>96-33-3</td>
<td>Methyl acrylate</td>
</tr>
<tr>
<td>96-34-4</td>
<td>Chloroacetic acid methyl ester</td>
</tr>
<tr>
<td>96-37-7</td>
<td>Hexane (all isomers except n-Hexane) and Methylcyclopentane: Methylcyclopentane</td>
</tr>
<tr>
<td>96-45-7</td>
<td>Ethylene thiourea</td>
</tr>
<tr>
<td>96-48-0</td>
<td>γ-Butyrolactone</td>
</tr>
<tr>
<td>97-00-7</td>
<td>1-Chloro-2,4-dinitrobenzene</td>
</tr>
<tr>
<td>97-18-7</td>
<td>Bithionol</td>
</tr>
<tr>
<td>97-53-0</td>
<td>Eugenol</td>
</tr>
<tr>
<td>97-54-1</td>
<td>Isoeugenol</td>
</tr>
<tr>
<td>97-56-3</td>
<td>o-Aminoazotoluene</td>
</tr>
<tr>
<td>97-63-2</td>
<td>Methacrylic acid ethyl ester</td>
</tr>
<tr>
<td>97-77-8</td>
<td>Disulfiram</td>
</tr>
<tr>
<td>97-88-1</td>
<td>n-Butyl methacrylate</td>
</tr>
<tr>
<td>97-90-5</td>
<td>Ethylene glycol dimethacrylate</td>
</tr>
<tr>
<td>98-00-0</td>
<td>Furfuryl alcohol</td>
</tr>
<tr>
<td>98-01-1</td>
<td>Furfural</td>
</tr>
<tr>
<td>98-07-7</td>
<td>Benzyl trichloride</td>
</tr>
<tr>
<td>98-29-3</td>
<td>p-tert-Butylcatechol</td>
</tr>
<tr>
<td>98-51-1</td>
<td>p-tert-Butyl toluene</td>
</tr>
<tr>
<td>98-54-4</td>
<td>p-tert-Butylphenol</td>
</tr>
<tr>
<td>98-73-7</td>
<td>4-tert-Butylbenzoic acid</td>
</tr>
<tr>
<td>98-82-8</td>
<td>iso-Propyl benzene (cumene)</td>
</tr>
<tr>
<td>98-83-9</td>
<td>α-Methyl styrene</td>
</tr>
<tr>
<td>98-87-3</td>
<td>Benzyl dichloride</td>
</tr>
<tr>
<td>98-88-4</td>
<td>Benzoyle chloride</td>
</tr>
<tr>
<td>98-95-3</td>
<td>Nitrobenzene</td>
</tr>
<tr>
<td>99-08-1</td>
<td>3-Nitrotoluene</td>
</tr>
<tr>
<td>99-54-7</td>
<td>3,4-Dichloronitrobenzene</td>
</tr>
<tr>
<td>99-55-8</td>
<td>5-Nitro-o-toluidine</td>
</tr>
<tr>
<td>99-65-0</td>
<td>Dinitrobenzene (all isomers): 1,3-Dinitrobenzene</td>
</tr>
<tr>
<td>99-97-8</td>
<td>N,N-Dimethyl-p-toluidine (Announcement list)</td>
</tr>
<tr>
<td>99-99-0</td>
<td>4-Nitrotoluene</td>
</tr>
<tr>
<td>100-00-5</td>
<td>p-Chloronitrobenzene</td>
</tr>
<tr>
<td>100-01-6</td>
<td>4-Nitroaniline</td>
</tr>
<tr>
<td>100-21-0</td>
<td>p-Phthalic acid</td>
</tr>
<tr>
<td>CAS number</td>
<td>Substance</td>
</tr>
<tr>
<td>------------</td>
<td>-----------</td>
</tr>
<tr>
<td>100-25-4</td>
<td>Dinitrobenzene (all isomers): 1,4-Dinitrobenzene</td>
</tr>
<tr>
<td>100-37-8</td>
<td>2-Diethylaminoethanol</td>
</tr>
<tr>
<td>100-40-3</td>
<td>4-Vinylcyclohexene</td>
</tr>
<tr>
<td>100-41-4</td>
<td>Ethylbenzene</td>
</tr>
<tr>
<td>100-42-5</td>
<td>Styrene</td>
</tr>
<tr>
<td>100-44-7</td>
<td>Benzyl chloride</td>
</tr>
<tr>
<td>100-51-6</td>
<td>Benzyl alcohol</td>
</tr>
<tr>
<td>100-52-7</td>
<td>Benzaldehyde</td>
</tr>
<tr>
<td>100-61-8</td>
<td>N-Methylaniline</td>
</tr>
<tr>
<td>100-63-0</td>
<td>Phenylhydrazine</td>
</tr>
<tr>
<td>100-74-3</td>
<td>N-Ethylmorpholine</td>
</tr>
<tr>
<td>100-75-4</td>
<td>N-Nitrosopiperidine</td>
</tr>
<tr>
<td>100-97-0</td>
<td>Hexamethylenetetramine</td>
</tr>
<tr>
<td>101-14-4</td>
<td>4,4’-Methylene-bis(2-chloroaniline) (MOCA)</td>
</tr>
<tr>
<td>101-54-2</td>
<td>4-Aminodiphenylamine</td>
</tr>
<tr>
<td>101-61-1</td>
<td>4,4’-Methylene-bis(N,N-dimethylaniline)</td>
</tr>
<tr>
<td>101-67-7</td>
<td>4,4’-Diocytldiphenylamine</td>
</tr>
<tr>
<td>101-68-8</td>
<td>4,4’-Methylene diphenyl diisocyanate (MDI)</td>
</tr>
<tr>
<td>101-72-4</td>
<td>N-Isopropyl-N’-phenyl-p-phenylenediamine</td>
</tr>
<tr>
<td>101-77-9</td>
<td>4,4’-Diaminodiphenylmethane</td>
</tr>
<tr>
<td>101-80-4</td>
<td>4,4’-Oxydianiline</td>
</tr>
<tr>
<td>101-83-7</td>
<td>Dicyclohexylamine</td>
</tr>
<tr>
<td>101-84-8</td>
<td>Diphenyl ether</td>
</tr>
<tr>
<td>101-87-1</td>
<td>N-Cyclohexyl-N’-phenyl-p-phenylenediamine</td>
</tr>
<tr>
<td>101-90-6</td>
<td>Diglycidyl resorcinol ether</td>
</tr>
<tr>
<td>102-71-6</td>
<td>Triethanolamine</td>
</tr>
<tr>
<td>102-77-2</td>
<td>2-(4-Morpholinylmercapto)benzothiazole</td>
</tr>
<tr>
<td>102-82-9</td>
<td>Tri-n-butylamine</td>
</tr>
<tr>
<td>103-09-3</td>
<td>2-Ethylhexyl acetate</td>
</tr>
<tr>
<td>103-11-7</td>
<td>Acrylic acid 2-ethylhexyl ester</td>
</tr>
<tr>
<td>103-71-9</td>
<td>Phenyl isocyanate</td>
</tr>
<tr>
<td>104-12-1</td>
<td>4-Chlorophenyl isocyanate</td>
</tr>
<tr>
<td>104-51-8</td>
<td>n-Butylbenzene</td>
</tr>
<tr>
<td>104-54-1</td>
<td>Cinnamyl alcohol</td>
</tr>
<tr>
<td>104-55-2</td>
<td>Cinnamaldehyde</td>
</tr>
<tr>
<td>104-76-7</td>
<td>2-Ethylhexanol</td>
</tr>
<tr>
<td>104-91-6</td>
<td>4-Nitrosophenol</td>
</tr>
<tr>
<td>104-94-9</td>
<td>p-Anisidine</td>
</tr>
<tr>
<td>105-46-4</td>
<td>sec-Butyl acetate</td>
</tr>
<tr>
<td>105-59-9</td>
<td>Methyldiethanolamine</td>
</tr>
<tr>
<td>105-60-2</td>
<td>ε-Caprolactam</td>
</tr>
<tr>
<td>105-74-8</td>
<td>Dilauroyl peroxide</td>
</tr>
<tr>
<td>106-14-9</td>
<td>12-Hydroxystearic acid</td>
</tr>
<tr>
<td>106-24-1</td>
<td>Geraniol</td>
</tr>
<tr>
<td>106-35-4</td>
<td>3-Heptanone</td>
</tr>
<tr>
<td>106-44-5</td>
<td>Cresol (all isomers): p-Cresol</td>
</tr>
<tr>
<td>106-46-7</td>
<td>1,4-Dichlorobenzene</td>
</tr>
<tr>
<td>106-47-8</td>
<td>p-Chloroaniline</td>
</tr>
<tr>
<td>106-49-0</td>
<td>p-Toluidine</td>
</tr>
<tr>
<td>106-50-3</td>
<td>p-Phenylenediamine</td>
</tr>
<tr>
<td>106-51-4</td>
<td>Quinone</td>
</tr>
<tr>
<td>106-65-0</td>
<td>Dimethyl succinate</td>
</tr>
<tr>
<td>106-87-6</td>
<td>4-Vinyl-1-cyclohexene dioxide</td>
</tr>
<tr>
<td>106-88-7</td>
<td>1,2-Butylene oxide</td>
</tr>
<tr>
<td>106-89-8</td>
<td>1-Chloro-2,3-epoxypropane</td>
</tr>
<tr>
<td>106-91-2</td>
<td>Glycidyl methacrylate</td>
</tr>
<tr>
<td>CAS number</td>
<td>Substance</td>
</tr>
<tr>
<td>------------</td>
<td>-----------</td>
</tr>
<tr>
<td>106-92-3</td>
<td>Allyl glycidyl ether</td>
</tr>
<tr>
<td>106-93-4</td>
<td>1,2-Dibromoethane</td>
</tr>
<tr>
<td>106-94-5</td>
<td>1-Bromopropane</td>
</tr>
<tr>
<td>106-97-8</td>
<td>Butane (both isomers): n-Butane</td>
</tr>
<tr>
<td>106-99-0</td>
<td>1,3-Butadiene</td>
</tr>
<tr>
<td>107-02-8</td>
<td>Acrolein</td>
</tr>
<tr>
<td>107-05-1</td>
<td>Allyl chloride</td>
</tr>
<tr>
<td>107-06-2</td>
<td>1,2-Dichloroethane</td>
</tr>
<tr>
<td>107-07-3</td>
<td>2-Chloroethanol</td>
</tr>
<tr>
<td>107-13-1</td>
<td>Acrylonitrile</td>
</tr>
<tr>
<td>107-15-3</td>
<td>Ethylenediamine</td>
</tr>
<tr>
<td>107-18-6</td>
<td>Allyl alcohol</td>
</tr>
<tr>
<td>107-19-7</td>
<td>Propargyl alcohol</td>
</tr>
<tr>
<td>107-20-0</td>
<td>Chloroacetaldehyde</td>
</tr>
<tr>
<td>107-21-1</td>
<td>Ethylene glycol</td>
</tr>
<tr>
<td>107-22-2</td>
<td>Glyoxal</td>
</tr>
<tr>
<td>107-25-5</td>
<td>Methyl vinyl ether</td>
</tr>
<tr>
<td>107-30-2</td>
<td>Monochlorodimethyl ether</td>
</tr>
<tr>
<td>107-31-3</td>
<td>Formic acid methyl ester</td>
</tr>
<tr>
<td>107-41-5</td>
<td>Hexylene glycol</td>
</tr>
<tr>
<td>107-49-3</td>
<td>TEPP</td>
</tr>
<tr>
<td>107-66-4</td>
<td>Di-n-butyl phosphate</td>
</tr>
<tr>
<td>107-71-1</td>
<td>tert-Butyl peracetate</td>
</tr>
<tr>
<td>107-75-5</td>
<td>Hydroxycitronellol</td>
</tr>
<tr>
<td>107-83-5</td>
<td>Hexane (all isomers except n-Hexane) and Methylcyclopentane: 2-Methylpentane</td>
</tr>
<tr>
<td>107-87-9</td>
<td>2-Pentanone</td>
</tr>
<tr>
<td>107-98-2</td>
<td>1-Methoxy-2-propanol</td>
</tr>
<tr>
<td>108-03-2</td>
<td>1-Nitropropane</td>
</tr>
<tr>
<td>108-05-4</td>
<td>Vinyl acetate</td>
</tr>
<tr>
<td>108-10-1</td>
<td>Hexone</td>
</tr>
<tr>
<td>108-11-2</td>
<td>4-Methyl-2-pentanol</td>
</tr>
<tr>
<td>108-20-3</td>
<td>Isopropyl ether</td>
</tr>
<tr>
<td>108-21-4</td>
<td>Propylacetate: Isopropyl acetate</td>
</tr>
<tr>
<td>108-22-5</td>
<td>Isopropenyl acetate</td>
</tr>
<tr>
<td>108-24-7</td>
<td>Acetic anhydride</td>
</tr>
<tr>
<td>108-31-6</td>
<td>Maleic anhydride</td>
</tr>
<tr>
<td>108-32-7</td>
<td>4-Methyl-1,3-dioxolan-2-one</td>
</tr>
<tr>
<td>108-39-4</td>
<td>Cresol (all isomers): m-Cresol</td>
</tr>
<tr>
<td>108-42-9</td>
<td>m-Chloroaniline</td>
</tr>
<tr>
<td>108-45-2</td>
<td>m-Phenylenediamine</td>
</tr>
<tr>
<td>108-46-3</td>
<td>Resorcinol</td>
</tr>
<tr>
<td>108-65-6</td>
<td>1-Methoxypropyl-2-acetate</td>
</tr>
<tr>
<td>108-67-8</td>
<td>Trimethylbenzene (all isomers): 1,3,5-Trimethylbenzene</td>
</tr>
<tr>
<td>108-69-0</td>
<td>Xyldine: 3,5-Xyldine</td>
</tr>
<tr>
<td>108-70-3</td>
<td>1,3,5-Trichlorobenzene</td>
</tr>
<tr>
<td>108-77-0</td>
<td>Cyanuric chloride</td>
</tr>
<tr>
<td>108-83-8</td>
<td>Diisobutyl ketone</td>
</tr>
<tr>
<td>108-84-9</td>
<td>sec-Hexyl acetate</td>
</tr>
<tr>
<td>108-87-2</td>
<td>Methylcyclohexane</td>
</tr>
<tr>
<td>108-88-3</td>
<td>Toluene (Toluol)</td>
</tr>
<tr>
<td>108-90-7</td>
<td>Chlorobenzene</td>
</tr>
<tr>
<td>108-91-8</td>
<td>Cyclohexylamine</td>
</tr>
<tr>
<td>108-93-0</td>
<td>Cyclohexanol</td>
</tr>
<tr>
<td>108-94-1</td>
<td>Cyclohexanone</td>
</tr>
<tr>
<td>108-95-2</td>
<td>Phenol</td>
</tr>
<tr>
<td>109-16-0</td>
<td>Triethylene glycol dimethacrylate</td>
</tr>
<tr>
<td>CAS number</td>
<td>Substance</td>
</tr>
<tr>
<td>------------</td>
<td>-----------------------------------------------</td>
</tr>
<tr>
<td>109-17-1</td>
<td>Tetraethylene glycol dimethacrylate</td>
</tr>
<tr>
<td>109-53-5</td>
<td>iso-Butyl vinyl ether</td>
</tr>
<tr>
<td>109-59-1</td>
<td>2-Isoproxyethanol</td>
</tr>
<tr>
<td>109-60-4</td>
<td>Propylacetate: n-Propyl acetate</td>
</tr>
<tr>
<td>109-66-0</td>
<td>Pentane (all isomers): n-Pentane</td>
</tr>
<tr>
<td>109-73-9</td>
<td>n-Butylamine</td>
</tr>
<tr>
<td>109-79-5</td>
<td>1-Butanethiol</td>
</tr>
<tr>
<td>109-86-4</td>
<td>2-Methoxyethanol</td>
</tr>
<tr>
<td>109-87-5</td>
<td>Dimethoxy methane</td>
</tr>
<tr>
<td>109-89-7</td>
<td>Diethyamine</td>
</tr>
<tr>
<td>109-92-2</td>
<td>Ethyl vinyl ether</td>
</tr>
<tr>
<td>109-94-4</td>
<td>Formic acid ethyl ester</td>
</tr>
<tr>
<td>109-99-9</td>
<td>Tetrahydrofuran</td>
</tr>
<tr>
<td>110-00-9</td>
<td>Furan</td>
</tr>
<tr>
<td>110-01-0</td>
<td>Tetrahydrothiophene (THT)</td>
</tr>
<tr>
<td>110-05-4</td>
<td>Di-tert-butyl peroxide</td>
</tr>
<tr>
<td>110-12-3</td>
<td>Methyl-2-hexanone</td>
</tr>
<tr>
<td>110-15-6</td>
<td>Succinic acid</td>
</tr>
<tr>
<td>110-19-0</td>
<td>Isobutyl acetate</td>
</tr>
<tr>
<td>110-22-5</td>
<td>Diacetyl peroxide</td>
</tr>
<tr>
<td>110-25-8</td>
<td>Oleyl sarcosine</td>
</tr>
<tr>
<td>110-49-6</td>
<td>2-Methoxyethyl acetate</td>
</tr>
<tr>
<td>110-54-3</td>
<td>n-Hexane</td>
</tr>
<tr>
<td>110-65-6</td>
<td>Butynedioli</td>
</tr>
<tr>
<td>110-80-5</td>
<td>2-Ethoxyethanol</td>
</tr>
<tr>
<td>110-82-7</td>
<td>Cyclohexane</td>
</tr>
<tr>
<td>110-83-8</td>
<td>Cyclohexene</td>
</tr>
<tr>
<td>110-85-0</td>
<td>Piperazine</td>
</tr>
<tr>
<td>110-86-1</td>
<td>Pyridine</td>
</tr>
<tr>
<td>110-91-8</td>
<td>Morpholine</td>
</tr>
<tr>
<td>110-94-1</td>
<td>Glutaric acid</td>
</tr>
<tr>
<td>111-15-9</td>
<td>2-Ethoxyethyl acetate</td>
</tr>
<tr>
<td>111-20-6</td>
<td>Sebacic acid</td>
</tr>
<tr>
<td>111-27-3</td>
<td>1-Hexanol</td>
</tr>
<tr>
<td>111-30-8</td>
<td>Glutaraldehyde</td>
</tr>
<tr>
<td>111-40-0</td>
<td>Diethylenetriamine</td>
</tr>
<tr>
<td>111-42-2</td>
<td>Diethanolamine</td>
</tr>
<tr>
<td>111-44-4</td>
<td>2,2'-Dichlorodiethyl ether</td>
</tr>
<tr>
<td>111-46-6</td>
<td>Diethylene glycol</td>
</tr>
<tr>
<td>111-76-2</td>
<td>2-Butoxyethanol</td>
</tr>
<tr>
<td>111-77-3</td>
<td>Diethylene glycol monomethyl ether (Announcement list)</td>
</tr>
<tr>
<td>111-87-5</td>
<td>1-Octanol</td>
</tr>
<tr>
<td>111-90-0</td>
<td>Diethylene glycol monoethyl ether</td>
</tr>
<tr>
<td>111-96-6</td>
<td>Diethylene glycol dimethyl ether</td>
</tr>
<tr>
<td>112-07-2</td>
<td>2-Butoxyethyl acetate</td>
</tr>
<tr>
<td>112-24-3</td>
<td>Triethylenetetramine</td>
</tr>
<tr>
<td>112-27-6</td>
<td>Triethylene glycol</td>
</tr>
<tr>
<td>112-30-1</td>
<td>Decyl alcohol</td>
</tr>
<tr>
<td>112-34-5</td>
<td>Diethylene glycol monobutyl ether</td>
</tr>
<tr>
<td>112-35-6</td>
<td>Triethylene glycol monomethyl ether</td>
</tr>
<tr>
<td>112-53-8</td>
<td>1-Dodecanol</td>
</tr>
<tr>
<td>112-72-1</td>
<td>1-Tetradecanol</td>
</tr>
<tr>
<td>112-80-1</td>
<td>Oleic acid</td>
</tr>
<tr>
<td>112-85-6</td>
<td>Behenic acid</td>
</tr>
<tr>
<td>112-92-5</td>
<td>1-Octadecanol</td>
</tr>
<tr>
<td>114-26-1</td>
<td>Propoxur</td>
</tr>
<tr>
<td>CAS number</td>
<td>Substance</td>
</tr>
<tr>
<td>------------</td>
<td>-----------------------------------------------------</td>
</tr>
<tr>
<td>115-10-6</td>
<td>Dimethyl ether</td>
</tr>
<tr>
<td>115-70-8</td>
<td>2-Amino-2-ethyl-1,3-propanediol</td>
</tr>
<tr>
<td>115-86-6</td>
<td>Triphenyl phosphate</td>
</tr>
<tr>
<td>116-14-3</td>
<td>Tetrafluoroethene</td>
</tr>
<tr>
<td>117-81-7</td>
<td>Di(2-ethylhexyl)phthalate (DEHP)</td>
</tr>
<tr>
<td>118-48-9</td>
<td>N-Carboxyanthranilic anhydride</td>
</tr>
<tr>
<td>118-74-1</td>
<td>Hexachlorobenzene</td>
</tr>
<tr>
<td>118-79-6</td>
<td>2,4,6-Tribromophenol</td>
</tr>
<tr>
<td>118-82-1</td>
<td>4,4′-Methylene-bis(2,6-di-tert-butylphenol)</td>
</tr>
<tr>
<td>118-91-2</td>
<td>Chlorobenzoic acid (all isomers): o-Chlorobenzoic acid</td>
</tr>
<tr>
<td>118-96-7</td>
<td>2,4,6-Trinitrotoluene</td>
</tr>
<tr>
<td>119-06-2</td>
<td>Ditridecyl phthalate</td>
</tr>
<tr>
<td>119-34-6</td>
<td>2-Nitro-4-aminophenol</td>
</tr>
<tr>
<td>119-61-9</td>
<td>Benzophenone (Announcement list)</td>
</tr>
<tr>
<td>119-64-2</td>
<td>Tetrahydronaphthalene</td>
</tr>
<tr>
<td>119-90-4</td>
<td>3,3′-Dimethoxybenzidine</td>
</tr>
<tr>
<td>119-93-7</td>
<td>3,3′-Dimethylbenzidine</td>
</tr>
<tr>
<td>120-71-8</td>
<td>5-Methyl-o-anisidine</td>
</tr>
<tr>
<td>120-78-5</td>
<td>2,2′-Dibenzothiazyl disulfide</td>
</tr>
<tr>
<td>120-82-1</td>
<td>1,2,4-Trichlorobenzene</td>
</tr>
<tr>
<td>121-44-8</td>
<td>Triethylamine</td>
</tr>
<tr>
<td>121-45-9</td>
<td>Trimethylphosphite</td>
</tr>
<tr>
<td>121-69-7</td>
<td>N,N-Dimethylaniline</td>
</tr>
<tr>
<td>121-73-3</td>
<td>m-Chloronitrobenzene</td>
</tr>
<tr>
<td>121-75-5</td>
<td>Malathion</td>
</tr>
<tr>
<td>121-91-5</td>
<td>m-Phthalic acid</td>
</tr>
<tr>
<td>121-92-6</td>
<td>3-Nitrobenzoic acid</td>
</tr>
<tr>
<td>122-39-4</td>
<td>Diphenylamine</td>
</tr>
<tr>
<td>122-40-7</td>
<td>α-Amylcinnamaldehyde</td>
</tr>
<tr>
<td>122-60-1</td>
<td>Phenyl glycidyl ether (PGE)</td>
</tr>
<tr>
<td>122-66-7</td>
<td>Hydrazobenzene</td>
</tr>
<tr>
<td>122-99-6</td>
<td>2-Phenoxyethanol</td>
</tr>
<tr>
<td>123-30-8</td>
<td>p-Aminophenol</td>
</tr>
<tr>
<td>123-31-9</td>
<td>Hydroquinone</td>
</tr>
<tr>
<td>123-42-2</td>
<td>Diacetone alcohol</td>
</tr>
<tr>
<td>123-51-3</td>
<td>Pentanol (isomers): 3-Methyl-1-butanol</td>
</tr>
<tr>
<td>123-54-6</td>
<td>2,4-Pentanedione</td>
</tr>
<tr>
<td>123-73-9</td>
<td>Crotonaldehyde</td>
</tr>
<tr>
<td>123-75-1</td>
<td>Pyrrolidine</td>
</tr>
<tr>
<td>123-77-3</td>
<td>Azodicarbonamide</td>
</tr>
<tr>
<td>123-86-4</td>
<td>n-Butyl acetate</td>
</tr>
<tr>
<td>123-91-1</td>
<td>1,4-Dioxane</td>
</tr>
<tr>
<td>123-92-2</td>
<td>Amyl acetate (all isomers): 3-Methylbutyl acetate</td>
</tr>
<tr>
<td>123-99-9</td>
<td>Azelaic acid</td>
</tr>
<tr>
<td>124-04-9</td>
<td>Adipic acid</td>
</tr>
<tr>
<td>124-17-4</td>
<td>Diethylene glycol monobutyl ether acetate</td>
</tr>
<tr>
<td>124-38-9</td>
<td>Carbon dioxide</td>
</tr>
<tr>
<td>124-40-3</td>
<td>Dimethylamine</td>
</tr>
<tr>
<td>124-68-5</td>
<td>2-Amino-2-methyl-1-propanol</td>
</tr>
<tr>
<td>126-11-4</td>
<td>2-Hydroxyethyl-2-nitro-1,3-propanediol</td>
</tr>
<tr>
<td>126-71-6</td>
<td>Trisobutyl phosphate</td>
</tr>
<tr>
<td>126-73-8</td>
<td>Tributyl phosphate</td>
</tr>
<tr>
<td>126-99-8</td>
<td>Chloroprene</td>
</tr>
<tr>
<td>127-18-4</td>
<td>Tetrachloroethylene</td>
</tr>
<tr>
<td>127-19-5</td>
<td>N,N-Dimethyl acetamide</td>
</tr>
<tr>
<td>127-20-8</td>
<td>2,2-Dichloropropionic acid, sodium salt</td>
</tr>
<tr>
<td>CAS number</td>
<td>Substance</td>
</tr>
<tr>
<td>------------</td>
<td>-----------</td>
</tr>
<tr>
<td>128-37-0</td>
<td>2,6-Di-tert-butyl-p-cresol (3,5-Di-tert-butyl-4-hydroxytoluene) (BHT)</td>
</tr>
<tr>
<td>128-39-2</td>
<td>2,6-Di-tert-butylphenol</td>
</tr>
<tr>
<td>129-00-0</td>
<td>Pyrene</td>
</tr>
<tr>
<td>129-16-8</td>
<td>Merbromin</td>
</tr>
<tr>
<td>129-79-3</td>
<td>2,4,7-Trinitrofluorenone</td>
</tr>
<tr>
<td>131-17-9</td>
<td>Diallyl phthalate</td>
</tr>
<tr>
<td>131-57-7</td>
<td>Benzophenone-3 (Announcement list)</td>
</tr>
<tr>
<td>132-27-4</td>
<td>Sodium o-phenylphenol</td>
</tr>
<tr>
<td>132-32-1</td>
<td>3-Amino-9-ethylcarbazole</td>
</tr>
<tr>
<td>135-01-3</td>
<td>Diethylbenzene: 1,2-Diethylbenzene</td>
</tr>
<tr>
<td>135-88-6</td>
<td>N-Phenyl-2-naphthylamine</td>
</tr>
<tr>
<td>137-05-3</td>
<td>Methyl 2-cyanoacrylate</td>
</tr>
<tr>
<td>137-17-7</td>
<td>2,4,5-Trimethylaniline</td>
</tr>
<tr>
<td>137-26-8</td>
<td>Thiram</td>
</tr>
<tr>
<td>137-30-4</td>
<td>Ziram</td>
</tr>
<tr>
<td>137-32-6</td>
<td>Pentanol (isomers): 2-Methyl-1-butanol</td>
</tr>
<tr>
<td>138-86-3</td>
<td>D,L-Limonene</td>
</tr>
<tr>
<td>139-13-9</td>
<td>Nitrilotriacetic acid</td>
</tr>
<tr>
<td>139-65-1</td>
<td>4,4’-Thiodianiline</td>
</tr>
<tr>
<td>140-66-9</td>
<td>4-tert-Octylphenol</td>
</tr>
<tr>
<td>140-88-5</td>
<td>Ethyl acrylate</td>
</tr>
<tr>
<td>140-95-4</td>
<td>1,3-Bis(hydroxymethyl)urea</td>
</tr>
<tr>
<td>141-32-2</td>
<td>n-Butyl acrylate</td>
</tr>
<tr>
<td>141-43-5</td>
<td>2-Aminoethanol</td>
</tr>
<tr>
<td>141-78-6</td>
<td>Ethyl acetate</td>
</tr>
<tr>
<td>141-79-7</td>
<td>4-Methyl-3-penten-2-one</td>
</tr>
<tr>
<td>141-97-9</td>
<td>Acetoacetic acid ethyl ester</td>
</tr>
<tr>
<td>142-82-5</td>
<td>n-Heptane</td>
</tr>
<tr>
<td>143-07-7</td>
<td>Lauric acid</td>
</tr>
<tr>
<td>143-22-6</td>
<td>Triethylene glycol n-butyl ether</td>
</tr>
<tr>
<td>143-28-2</td>
<td>Oleyl alcohol</td>
</tr>
<tr>
<td>143-33-9</td>
<td>Sodium cyanide</td>
</tr>
<tr>
<td>143-50-0</td>
<td>Chlordecone</td>
</tr>
<tr>
<td>148-18-5</td>
<td>Sodium diethylthiocarbamate</td>
</tr>
<tr>
<td>148-79-8</td>
<td>Thiabendazole</td>
</tr>
<tr>
<td>149-30-4</td>
<td>2-Mercaptobenzothiazole</td>
</tr>
<tr>
<td>149-57-5</td>
<td>2-Ethylhexanoic acid</td>
</tr>
<tr>
<td>150-60-7</td>
<td>Dibenzyl disulfide</td>
</tr>
<tr>
<td>151-50-8</td>
<td>Potassium cyanide</td>
</tr>
<tr>
<td>151-56-4</td>
<td>Ethylenimine</td>
</tr>
<tr>
<td>151-67-7</td>
<td>Halothane</td>
</tr>
<tr>
<td>156-62-7</td>
<td>Calcium cyanamide</td>
</tr>
<tr>
<td>189-55-9</td>
<td>Dibenzo[a,i]pyrene</td>
</tr>
<tr>
<td>189-64-0</td>
<td>Dibenzo[a,h]pyrene</td>
</tr>
<tr>
<td>191-26-4</td>
<td>Anthanthrene</td>
</tr>
<tr>
<td>191-30-0</td>
<td>Dibenzo[a,l]pyrene</td>
</tr>
<tr>
<td>192-65-4</td>
<td>Dibenzo[a,e]pyrene</td>
</tr>
<tr>
<td>193-39-5</td>
<td>Indeno[1,2,3-cd]pyrene</td>
</tr>
<tr>
<td>205-82-3</td>
<td>Benzo[j]fluoranthenne</td>
</tr>
<tr>
<td>205-99-2</td>
<td>Benzo[b]fluoranthenne</td>
</tr>
<tr>
<td>207-08-9</td>
<td>Benzo[k]fluoranthenne</td>
</tr>
<tr>
<td>218-01-9</td>
<td>Chrysene</td>
</tr>
<tr>
<td>239-35-0</td>
<td>Benzo[b]naphtho[2,1-d]thiophene</td>
</tr>
<tr>
<td>288-32-4</td>
<td>Imidazole</td>
</tr>
<tr>
<td>300-76-5</td>
<td>Naled</td>
</tr>
<tr>
<td>302-01-2</td>
<td>Hydrazine</td>
</tr>
<tr>
<td>CAS number</td>
<td>Substance</td>
</tr>
<tr>
<td>------------</td>
<td>---------------------------------------------------------------------------</td>
</tr>
<tr>
<td>303-47-9</td>
<td>Ochratoxin A</td>
</tr>
<tr>
<td>306-83-2</td>
<td>2,2-Dichloro-1,1,1-trifluoroethane (FC-123)</td>
</tr>
<tr>
<td>309-00-2</td>
<td>Aldrin</td>
</tr>
<tr>
<td>319-84-6</td>
<td>α-Hexachlorocyclohexane</td>
</tr>
<tr>
<td>319-85-7</td>
<td>β-Hexachlorocyclohexane</td>
</tr>
<tr>
<td>333-41-5</td>
<td>Diazinon</td>
</tr>
<tr>
<td>334-88-3</td>
<td>Diazomethane</td>
</tr>
<tr>
<td>335-67-1</td>
<td>Perfluorooctanoic acid (PFOA)</td>
</tr>
<tr>
<td>373-02-4</td>
<td>Nickel and nickel compounds: Nickel acetate</td>
</tr>
<tr>
<td>382-21-8</td>
<td>Perfluoroisobutene (Announcement list)</td>
</tr>
<tr>
<td>409-21-2</td>
<td>Silicon carbide</td>
</tr>
<tr>
<td>420-04-2</td>
<td>Cyanamide</td>
</tr>
<tr>
<td>431-03-8</td>
<td>Diacetyl</td>
</tr>
<tr>
<td>460-19-5</td>
<td>Cyanogen</td>
</tr>
<tr>
<td>461-58-5</td>
<td>Dicyanodiadimide</td>
</tr>
<tr>
<td>463-51-4</td>
<td>Ketene</td>
</tr>
<tr>
<td>463-82-1</td>
<td>Pentane (all isomers): tert-Pentane</td>
</tr>
<tr>
<td>470-17-7</td>
<td>Sesquiterpene lactones: Isoalantolactone</td>
</tr>
<tr>
<td>477-43-0</td>
<td>Sesquiterpene lactones: Dehydrocostus lactone</td>
</tr>
<tr>
<td>479-45-8</td>
<td>N-Methyl-N,2,4,6-tetranitroaniline</td>
</tr>
<tr>
<td>492-80-8</td>
<td>Auramine</td>
</tr>
<tr>
<td>504-29-0</td>
<td>2-Aminopyridine</td>
</tr>
<tr>
<td>505-60-2</td>
<td>Bis(β-chloroethyl)sulfide (mustard gas)</td>
</tr>
<tr>
<td>506-77-4</td>
<td>Cyanogen chloride</td>
</tr>
<tr>
<td>508-59-8</td>
<td>Sesquiterpene lactones: Parthenin</td>
</tr>
<tr>
<td>509-14-8</td>
<td>Tetranitromethane</td>
</tr>
<tr>
<td>512-56-1</td>
<td>Trimethyl phosphate</td>
</tr>
<tr>
<td>513-53-1</td>
<td>2-Butanethiol</td>
</tr>
<tr>
<td>513-79-1</td>
<td>Cobalt: Cobalt(II) carbonate</td>
</tr>
<tr>
<td>514-10-3</td>
<td>Abietic acid</td>
</tr>
<tr>
<td>526-73-8</td>
<td>Trimethylbenzene (all isomers): 1,2,3-Trimethylbenzene</td>
</tr>
<tr>
<td>528-29-0</td>
<td>Dinitrobenzene (all isomers): 1,2-Dinitrobenzene</td>
</tr>
<tr>
<td>534-52-1</td>
<td>4,6-Dinitro-o-cresol</td>
</tr>
<tr>
<td>535-80-8</td>
<td>Chlorobenzoic acid (all isomers): m-Chlorobenzoic acid</td>
</tr>
<tr>
<td>538-75-0</td>
<td>Dicyclohexylcarbodiimide</td>
</tr>
<tr>
<td>540-59-0</td>
<td>1,2-Dichloroethylene sym</td>
</tr>
<tr>
<td>540-73-8</td>
<td>1,2-Dimethylhydrazine</td>
</tr>
<tr>
<td>540-88-5</td>
<td>tert-Butyl acetate</td>
</tr>
<tr>
<td>541-41-3</td>
<td>Chloroformic acid ethyl ester</td>
</tr>
<tr>
<td>541-73-1</td>
<td>1,3-Dichlorobenzene</td>
</tr>
<tr>
<td>541-85-5</td>
<td>5-Methyl-3-heptanone</td>
</tr>
<tr>
<td>542-75-6</td>
<td>1,3-Dichloropropene</td>
</tr>
<tr>
<td>542-88-1</td>
<td>Bischloromethyl ether</td>
</tr>
<tr>
<td>542-92-7</td>
<td>Cyclopentadiene</td>
</tr>
<tr>
<td>543-27-1</td>
<td>Chloroformic acid butyl ester</td>
</tr>
<tr>
<td>544-63-8</td>
<td>Myristic acid</td>
</tr>
<tr>
<td>546-43-0</td>
<td>Sesquiterpene lactones: Alantolactone</td>
</tr>
<tr>
<td>552-30-7</td>
<td>Trimellitic anhydride</td>
</tr>
<tr>
<td>553-21-9</td>
<td>Sesquiterpene lactones: Costunolide</td>
</tr>
<tr>
<td>556-52-5</td>
<td>Glycidol (Glycide)</td>
</tr>
<tr>
<td>563-47-3</td>
<td>3-Chloro-2-methylpropene</td>
</tr>
<tr>
<td>581-89-5</td>
<td>2-Nitronaphthalene</td>
</tr>
<tr>
<td>583-60-8</td>
<td>1-Methylcyclohexan-2-one</td>
</tr>
<tr>
<td>584-02-1</td>
<td>Pentanol (isomers): 3-Pentanol</td>
</tr>
<tr>
<td>584-84-9</td>
<td>Toluene diisocyanates: Toluene-2,4-diisocyanate</td>
</tr>
<tr>
<td>591-27-5</td>
<td>3-Aminophenol</td>
</tr>
<tr>
<td>CAS number</td>
<td>Substance</td>
</tr>
<tr>
<td>------------</td>
<td>-----------------------------------------------</td>
</tr>
<tr>
<td>591-78-6</td>
<td>2-Hexanone</td>
</tr>
<tr>
<td>592-34-7</td>
<td>Chloroformic acid butyl ester</td>
</tr>
<tr>
<td>593-70-4</td>
<td>Chlorofluoromethane (FC-31)</td>
</tr>
<tr>
<td>594-27-4</td>
<td>Methyltin compounds : Tetramethyltin</td>
</tr>
<tr>
<td>594-42-3</td>
<td>Perchloromethyl mercaptan</td>
</tr>
<tr>
<td>594-72-9</td>
<td>1,1-Dichloro-1-nitroethane</td>
</tr>
<tr>
<td>597-82-0</td>
<td>Triphenyl monothiophosphate</td>
</tr>
<tr>
<td>598-56-1</td>
<td>N,N-Dimethyllethylamine</td>
</tr>
<tr>
<td>598-75-4</td>
<td>Pentanol (isomers): 3-Methyl-2-butanol</td>
</tr>
<tr>
<td>600-14-6</td>
<td>2,3-Pentanedione</td>
</tr>
<tr>
<td>600-25-9</td>
<td>1-Chloro-1-nitropropane</td>
</tr>
<tr>
<td>601-77-4</td>
<td>N-Nitrosodisopropylamine</td>
</tr>
<tr>
<td>602-87-9</td>
<td>5-Nitroacenaphthene</td>
</tr>
<tr>
<td>603-35-0</td>
<td>Triphenyl phosphine</td>
</tr>
<tr>
<td>612-64-6</td>
<td>N-Nitrosoethylphenylamine</td>
</tr>
<tr>
<td>614-00-6</td>
<td>N-Nitrosomethylphenylamine</td>
</tr>
<tr>
<td>615-05-4</td>
<td>2,4-Diaminoanisole</td>
</tr>
<tr>
<td>620-11-1</td>
<td>Amyl acetate (all isomers): 3-Pentyl acetate</td>
</tr>
<tr>
<td>621-64-7</td>
<td>N-Nitrosodi-n-propylamine</td>
</tr>
<tr>
<td>624-41-9</td>
<td>Amyl acetate (all isomers): 2-Methylbutyl acetate</td>
</tr>
<tr>
<td>624-83-9</td>
<td>Methyl isocyanate</td>
</tr>
<tr>
<td>625-16-1</td>
<td>Amyl acetate (all isomers): 1,1-Dimethylpropyl acetate</td>
</tr>
<tr>
<td>625-45-6</td>
<td>Methoxyacetic acid</td>
</tr>
<tr>
<td>626-38-0</td>
<td>Amyl acetate (all isomers): 1-Methylbutyl acetate</td>
</tr>
<tr>
<td>627-13-4</td>
<td>n-Propyl nitrate</td>
</tr>
<tr>
<td>627-93-0</td>
<td>Dimethyl adipate</td>
</tr>
<tr>
<td>628-63-7</td>
<td>Amyl acetate (all isomers): 1-Pentyl acetate</td>
</tr>
<tr>
<td>628-96-6</td>
<td>Ethylene glycol dinitrate</td>
</tr>
<tr>
<td>630-08-0</td>
<td>Carbon monoxide</td>
</tr>
<tr>
<td>632-22-4</td>
<td>Tetramethyl urea (TMU)</td>
</tr>
<tr>
<td>637-03-6</td>
<td>Phenyl arsenic compounds</td>
</tr>
<tr>
<td>646-06-0</td>
<td>1,3-Dioxolane (Dioxacyclopentane)</td>
</tr>
<tr>
<td>650-51-1</td>
<td>Sodium trichloroacetate</td>
</tr>
<tr>
<td>674-82-8</td>
<td>Diketene</td>
</tr>
<tr>
<td>680-31-9</td>
<td>Hexamethylyphosphoric acid triamide</td>
</tr>
<tr>
<td>693-21-0</td>
<td>Diethyleneglycol dinitrate</td>
</tr>
<tr>
<td>693-23-2</td>
<td>Dodecanedioic acid</td>
</tr>
<tr>
<td>700-13-0</td>
<td>Trimethylhydroquinone</td>
</tr>
<tr>
<td>730-40-5</td>
<td>Disperse Orange 3</td>
</tr>
<tr>
<td>754-12-1</td>
<td>2,3,3,3-Tetrafluoropropene</td>
</tr>
<tr>
<td>763-69-9</td>
<td>Ethyl-3-ethoxypropionate</td>
</tr>
<tr>
<td>764-41-0</td>
<td>1,4-Dichloro-2-butene</td>
</tr>
<tr>
<td>770-35-4</td>
<td>1-Phenoxy-2-propanol</td>
</tr>
<tr>
<td>793-24-8</td>
<td>N-(1,3-Dimethylbutyl)-N'-phenyl-p-phenylenediamine</td>
</tr>
<tr>
<td>811-97-2</td>
<td>1,1,1,2-Tetrafluoroethane</td>
</tr>
<tr>
<td>818-61-1</td>
<td>Acrylic acid 2-hydroxyethyl ester</td>
</tr>
<tr>
<td>822-06-0</td>
<td>1,6-Hexamethylene diisocyanate</td>
</tr>
<tr>
<td>838-88-0</td>
<td>4,4'-Methylene-bis(2-methylaniline)</td>
</tr>
<tr>
<td>868-77-9</td>
<td>2-Hydroxyethyl methacrylate</td>
</tr>
<tr>
<td>868-85-9</td>
<td>Dimethyl hydrogen phosphite</td>
</tr>
<tr>
<td>872-50-4</td>
<td>N-Methyl-2-pyrrolidone</td>
</tr>
<tr>
<td>877-44-1</td>
<td>1,2,4-Triethylbenzene</td>
</tr>
<tr>
<td>920-37-6</td>
<td>2-Chloroacrylonitrile</td>
</tr>
<tr>
<td>923-26-2</td>
<td>Methacrylic acid 2-hydroxypropyl ester</td>
</tr>
<tr>
<td>924-16-3</td>
<td>N-Nitrosodi-n-butylamine</td>
</tr>
<tr>
<td>929-06-6</td>
<td>2-(2-Aminoethoxy)ethanol</td>
</tr>
<tr>
<td>CAS number</td>
<td>Substance</td>
</tr>
<tr>
<td>------------</td>
<td>---------------------------------------------------------------------------</td>
</tr>
<tr>
<td>930-55-2</td>
<td>N-Nitrosopyrrolidine</td>
</tr>
<tr>
<td>935-92-2</td>
<td>Trimethylquinone</td>
</tr>
<tr>
<td>996-35-0</td>
<td>N,N-Dimethylisopropylamine</td>
</tr>
<tr>
<td>1070-70-8</td>
<td>1,4-Butanediol diacrylate</td>
</tr>
<tr>
<td>1116-54-7</td>
<td>N-Nitrosodiethanolamine</td>
</tr>
<tr>
<td>1119-40-0</td>
<td>Dimethyl glutarate</td>
</tr>
<tr>
<td>1120-71-4</td>
<td>1,3-Propane sultone</td>
</tr>
<tr>
<td>1121-03-5</td>
<td>2,4-Butane sultone</td>
</tr>
<tr>
<td>1239-45-8</td>
<td>Ethidium bromide</td>
</tr>
<tr>
<td>1302-74-5</td>
<td>Aluminium-, Aluminium oxide- and Aluminium hydroxide-containing dusts</td>
</tr>
<tr>
<td>1302-78-9</td>
<td>Bentonite</td>
</tr>
<tr>
<td>1303-00-0</td>
<td>Arsenic: Gallium arsenide</td>
</tr>
<tr>
<td>1303-28-2</td>
<td>Arsenic: Arsenic pentoxide</td>
</tr>
<tr>
<td>1303-86-2</td>
<td>Boron oxide</td>
</tr>
<tr>
<td>1305-62-0</td>
<td>Calcium hydroxide</td>
</tr>
<tr>
<td>1305-78-8</td>
<td>Calcium oxide</td>
</tr>
<tr>
<td>1306-38-3</td>
<td>Cerium dioxide (Announcement list)</td>
</tr>
<tr>
<td>1307-96-6</td>
<td>Cobalt: Cobalt(II) oxide</td>
</tr>
<tr>
<td>1308-06-1</td>
<td>Cobalt: Cobalt(II,III) oxide</td>
</tr>
<tr>
<td>1309-37-1</td>
<td>Iron oxides</td>
</tr>
<tr>
<td>1309-38-2</td>
<td>Iron oxides</td>
</tr>
<tr>
<td>1309-48-4</td>
<td>Magnesium oxide</td>
</tr>
<tr>
<td>1310-73-2</td>
<td>Sodium hydroxide</td>
</tr>
<tr>
<td>1313-27-5</td>
<td>Molybdenum trioxide</td>
</tr>
<tr>
<td>1313-99-1</td>
<td>Nickel and nickel compounds: Nickel monoxide</td>
</tr>
<tr>
<td>1314-06-3</td>
<td>Nickel and nickel compounds: Nickel sesquioxide</td>
</tr>
<tr>
<td>1314-23-4</td>
<td>Zirconium dioxide</td>
</tr>
<tr>
<td>1314-56-3</td>
<td>Phosphorus pentoxide</td>
</tr>
<tr>
<td>1314-80-3</td>
<td>Phosphorus pentasulfide</td>
</tr>
<tr>
<td>1317-33-5</td>
<td>Molybdenum disulfide (Announcement list)</td>
</tr>
<tr>
<td>1317-42-6</td>
<td>Cobalt: Cobalt(II) sulfide</td>
</tr>
<tr>
<td>1317-43-7</td>
<td>Nemalite</td>
</tr>
<tr>
<td>1317-61-9</td>
<td>Iron oxides</td>
</tr>
<tr>
<td>1318-02-1</td>
<td>Zeolites, synthetic (non-fibrous)</td>
</tr>
<tr>
<td>1318-93-0</td>
<td>Montmorillonite</td>
</tr>
<tr>
<td>1319-77-3</td>
<td>Cresol (all isomers)</td>
</tr>
<tr>
<td>1321-74-0</td>
<td>Divinylbenzene (all isomers)</td>
</tr>
<tr>
<td>1327-41-9</td>
<td>Aluminium chlorohydrate (Announcement list)</td>
</tr>
<tr>
<td>1327-53-3</td>
<td>Arsenic: Arsenic trioxide</td>
</tr>
<tr>
<td>1330-20-7</td>
<td>Xylene (all isomers)</td>
</tr>
<tr>
<td>1330-78-5</td>
<td>Tricresyl phosphate, isomers, “free of o-isomers”</td>
</tr>
<tr>
<td>1332-21-4</td>
<td>Asbestos</td>
</tr>
<tr>
<td>1332-58-7</td>
<td>Kaolinite</td>
</tr>
<tr>
<td>1333-86-4</td>
<td>Carbon black</td>
</tr>
<tr>
<td>1338-23-4</td>
<td>Methyl ethyl ketone peroxide</td>
</tr>
<tr>
<td>1338-24-5</td>
<td>Naphthenic acids and sodium, calcium, potassium napthenates</td>
</tr>
<tr>
<td>1344-28-1</td>
<td>Aluminium oxide</td>
</tr>
<tr>
<td>1345-25-1</td>
<td>Iron oxides</td>
</tr>
<tr>
<td>1402-68-2</td>
<td>Aflatoxins</td>
</tr>
<tr>
<td>1461-25-2</td>
<td>n-Butyltin compounds: Tetra-n-butyltin</td>
</tr>
<tr>
<td>1464-53-5</td>
<td>Diepoxybutane</td>
</tr>
<tr>
<td>1477-55-0</td>
<td>m-Xylylenediamine</td>
</tr>
<tr>
<td>1484-13-5</td>
<td>Vinylcarbazole</td>
</tr>
<tr>
<td>1565-94-2</td>
<td>Bisphenol A diglycidyl methacrylate</td>
</tr>
<tr>
<td>1569-02-4</td>
<td>1-Ethoxy-2-propanol</td>
</tr>
<tr>
<td>1589-47-5</td>
<td>2-Methoxypropanol-1</td>
</tr>
<tr>
<td>CAS number</td>
<td>Substance</td>
</tr>
<tr>
<td>------------</td>
<td>---------------------------------------------------------------------------</td>
</tr>
<tr>
<td>1633-83-6</td>
<td>1,4-Butane sultone</td>
</tr>
<tr>
<td>1634-04-4</td>
<td>tert-Butyl methyl ether</td>
</tr>
<tr>
<td>1663-39-4</td>
<td>tert-Butyl acrylate</td>
</tr>
<tr>
<td>1667-11-4</td>
<td>4-Chloromethyl-biphenyl</td>
</tr>
<tr>
<td>1675-54-3</td>
<td>Bisphenol A diglycidyl ether</td>
</tr>
<tr>
<td>1680-21-3</td>
<td>Triethylene glycol diacrylate</td>
</tr>
<tr>
<td>1738-25-6</td>
<td>Dimethylaminopropionitrile</td>
</tr>
<tr>
<td>1746-01-6</td>
<td>2,3,7,8-Tetrachlorodibenzo-p-dioxin</td>
</tr>
<tr>
<td>1748-81-8</td>
<td>Sesquiterpene lactones: Carabrone</td>
</tr>
<tr>
<td>1758-61-8</td>
<td>Dicyclohexyl peroxide</td>
</tr>
<tr>
<td>1762-23-1</td>
<td>Perfluoroctanesulfonic acid (PFOS)</td>
</tr>
<tr>
<td>1809-14-9</td>
<td>Di-n-octyl phosphonate</td>
</tr>
<tr>
<td>1809-19-4</td>
<td>Di-n-butyl phosphonate</td>
</tr>
<tr>
<td>1817-47-6</td>
<td>p-Nitrocumene</td>
</tr>
<tr>
<td>1854-23-5</td>
<td>4-(2-Nitrobutyl)morpholine (70% w/w) and 4,4'-(2-Ethyl-2-nitro-1,3-propandiyl)bis-morpholin (20% w/w)</td>
</tr>
<tr>
<td>1854-26-8</td>
<td>Dimethylol dihydroxyethyleneurea</td>
</tr>
<tr>
<td>1891-29-8</td>
<td>Sesquiterpene lactones: Lactucin</td>
</tr>
<tr>
<td>1897-45-6</td>
<td>Chlorothalonil</td>
</tr>
<tr>
<td>1910-42-5</td>
<td>Paraquat</td>
</tr>
<tr>
<td>1912-24-9</td>
<td>Atrazine</td>
</tr>
<tr>
<td>2082-79-3</td>
<td>3,5-Di-tert-butyl-4-hydroxyphenyl propionic acid octadecyl ester</td>
</tr>
<tr>
<td>2082-81-7</td>
<td>1,4-Butanediol dimethacrylate</td>
</tr>
<tr>
<td>2095-03-6</td>
<td>Bisphenol F diglycidyl ether: p,p'-Bisphenol F diglycidyl ether</td>
</tr>
<tr>
<td>2104-64-5</td>
<td>EPN, O-Ethyl-O-(4-nitrophenyl)phenylthiophosphonate</td>
</tr>
<tr>
<td>2179-59-1</td>
<td>Allyl propyl disulfide</td>
</tr>
<tr>
<td>2224-44-4</td>
<td>4-(2-Nitrobutyl)morpholine (70% w/w) and 4,4'-(2-Ethyl-2-nitro-1,3-propandiyl)bis-morpholin (20% w/w)</td>
</tr>
<tr>
<td>2238-07-5</td>
<td>Diglycidyl ether (DGE)</td>
</tr>
<tr>
<td>2243-62-1</td>
<td>1,5-Diaminonaphthalene</td>
</tr>
<tr>
<td>2358-84-1</td>
<td>Diethylene glycol dimethacrylate</td>
</tr>
<tr>
<td>2372-82-9</td>
<td>N-(3-Aminopropyl)-N-dodecylpropane-1,3-diamine</td>
</tr>
<tr>
<td>2381-21-7</td>
<td>1-Methylpyrene</td>
</tr>
<tr>
<td>2386-87-0</td>
<td>3,4-Epoxycyclohexane carboxylic acid (3,4-epoxycyclohexylmethyl) ester</td>
</tr>
<tr>
<td>2406-68-0</td>
<td>Phenyltin compounds</td>
</tr>
<tr>
<td>2409-55-4</td>
<td>2-tet-Butyl-p-cresol</td>
</tr>
<tr>
<td>2425-77-6</td>
<td>2-Hexyl-1-decanol</td>
</tr>
<tr>
<td>2425-79-8</td>
<td>1,4-Butanediol diglycidyl ether</td>
</tr>
<tr>
<td>2426-08-6</td>
<td>n-Butyl glycidyl ether (BGE)</td>
</tr>
<tr>
<td>2431-50-7</td>
<td>2,3,4-Trichloro-1-butene</td>
</tr>
<tr>
<td>2451-62-9</td>
<td>1,3,5-Triglycidyl isocyanurate (mixture of isomers)</td>
</tr>
<tr>
<td>2455-24-5</td>
<td>Tetrahydrofurfuryle methacrylate</td>
</tr>
<tr>
<td>2465-27-2</td>
<td>Auramine hydrochloride</td>
</tr>
<tr>
<td>2527-58-4</td>
<td>2,2'-Dithiobis(N-methylbenzamide)</td>
</tr>
<tr>
<td>2551-62-4</td>
<td>Sulfur hexafluoride</td>
</tr>
<tr>
<td>2634-33-5</td>
<td>1,2-Benzisothiazol-3(2H)-one</td>
</tr>
<tr>
<td>2682-20-4</td>
<td>2-Methyl-4-isothiazolin-3-one</td>
</tr>
<tr>
<td>2687-91-4</td>
<td>N-Ethyl-2-pyrrolidone</td>
</tr>
<tr>
<td>2807-30-9</td>
<td>2-Propanoyethanol</td>
</tr>
<tr>
<td>2809-21-4</td>
<td>1-Hydroxyethylidene-1,1-diphosphonic acid</td>
</tr>
<tr>
<td>2832-19-1</td>
<td>Chloroacetamide-N-methylol (CAM)</td>
</tr>
<tr>
<td>2832-40-8</td>
<td>Disperse Yellow 3</td>
</tr>
<tr>
<td>2855-13-2</td>
<td>3-Aminomethyl-3,5,5-trimethyl-cyclohexylamine (Isophorone diamine)</td>
</tr>
<tr>
<td>2867-47-2</td>
<td>N,N'-(Dimethylamino)ethy methacrylate</td>
</tr>
<tr>
<td>2872-52-8</td>
<td>Disperse Red 1</td>
</tr>
<tr>
<td>3033-77-0</td>
<td>Glycidyl trimethylammonium chloride</td>
</tr>
<tr>
<td>CAS number</td>
<td>Substance</td>
</tr>
<tr>
<td>------------</td>
<td>-----------</td>
</tr>
<tr>
<td>3101-60-8</td>
<td>p-tert-Butylphenyl glycidyl ether</td>
</tr>
<tr>
<td>3115-49-9</td>
<td>(4-Nonylphenox)acetic acid</td>
</tr>
<tr>
<td>3129-91-7</td>
<td>Dicyclohexylamine nitrite</td>
</tr>
<tr>
<td>3173-72-6</td>
<td>1,5-Naphthalene diisocyanate</td>
</tr>
<tr>
<td>3179-89-3</td>
<td>Disperse Red 17</td>
</tr>
<tr>
<td>3302-10-1</td>
<td>Isononanoic acid</td>
</tr>
<tr>
<td>3333-52-6</td>
<td>Tetramethyl succinonitrile</td>
</tr>
<tr>
<td>3333-67-3</td>
<td>Nickel and nickel compounds: Nickel carbonate</td>
</tr>
<tr>
<td>3524-68-3</td>
<td>Pentaerythritol triacrylate</td>
</tr>
<tr>
<td>3687-31-8</td>
<td>Arsenic: Lead arsenate</td>
</tr>
<tr>
<td>3687-46-5</td>
<td>n-Decyl oleate</td>
</tr>
<tr>
<td>3689-24-5</td>
<td>TEDP</td>
</tr>
<tr>
<td>3811-73-2</td>
<td>Sodium pyrithione</td>
</tr>
<tr>
<td>3926-62-3</td>
<td>Sodium monochloroacetate</td>
</tr>
<tr>
<td>4016-14-2</td>
<td>Isopropyl glycidyl ether (IGE)</td>
</tr>
<tr>
<td>4065-45-6</td>
<td>Benzophenone-4 (Announcement list)</td>
</tr>
<tr>
<td>4074-88-8</td>
<td>Diethylene glycol diacylate</td>
</tr>
<tr>
<td>4080-31-3</td>
<td>Methenamine 3-chloroallylchloride</td>
</tr>
<tr>
<td>4098-71-9</td>
<td>Isophorone diisocyanate</td>
</tr>
<tr>
<td>4170-30-3</td>
<td>Crotonaldehyde</td>
</tr>
<tr>
<td>4259-15-8</td>
<td>Zinc, O,O-di-2-ethylhexyl dithiophosphate</td>
</tr>
<tr>
<td>4299-07-4</td>
<td>2-Butyl-1,2-benzisothiazolin-3-one</td>
</tr>
<tr>
<td>4435-53-4</td>
<td>3-Methoxy-n-butyl acetate</td>
</tr>
<tr>
<td>4485-12-5</td>
<td>Lithium stearate</td>
</tr>
<tr>
<td>4602-84-0</td>
<td>Farnesol</td>
</tr>
<tr>
<td>4687-94-9</td>
<td>Bisphenol A glycerolate</td>
</tr>
<tr>
<td>4719-04-4</td>
<td>N,N',N''-Tris(β-hydroxyethyl)hexahydro-1,3,5-triazine</td>
</tr>
<tr>
<td>5026-74-4</td>
<td>Triglycidyl-p-aminophenol</td>
</tr>
<tr>
<td>5064-31-3</td>
<td>Nitrotriacetic acid: Trisodium nitrotriacetate</td>
</tr>
<tr>
<td>5102-83-0</td>
<td>Pigment Yellow 12, Pigment Yellow 13, Pigment Yellow 83</td>
</tr>
<tr>
<td>5124-30-1</td>
<td>Dicyclohexyl methane 4,4'-diisocyanate</td>
</tr>
<tr>
<td>5216-25-1</td>
<td>p-Chlorobenzotrichloride</td>
</tr>
<tr>
<td>5307-14-2</td>
<td>2-Nitro-p-phenylenediamine</td>
</tr>
<tr>
<td>5333-42-6</td>
<td>2-Octyl-1-dodecanol</td>
</tr>
<tr>
<td>5493-45-8</td>
<td>Hexahydrophthalic acid diglycidylester</td>
</tr>
<tr>
<td>5567-15-7</td>
<td>Pigment Yellow 12, Pigment Yellow 13, Pigment Yellow 83</td>
</tr>
<tr>
<td>5625-90-1</td>
<td>4,4'-Methyleneimorpholine</td>
</tr>
<tr>
<td>5714-22-7</td>
<td>Sulfur pentfluoride</td>
</tr>
<tr>
<td>5888-33-5</td>
<td>Isobornyl acrylate</td>
</tr>
<tr>
<td>5912-86-7</td>
<td>Isoeugenol: cis-Isoeugenol</td>
</tr>
<tr>
<td>5932-68-3</td>
<td>Isoeugenol: trans-Isoeugenol</td>
</tr>
<tr>
<td>5989-27-5</td>
<td>D-Limonene</td>
</tr>
<tr>
<td>5989-54-8</td>
<td>L-Limonene</td>
</tr>
<tr>
<td>6032-29-7</td>
<td>Pentanol (isomers): 2-Pentanol</td>
</tr>
<tr>
<td>6358-64-1</td>
<td>2,5-Dimethoxy-4-chloroaniline</td>
</tr>
<tr>
<td>6358-85-6</td>
<td>Pigment Yellow 12, Pigment Yellow 13, Pigment Yellow 83</td>
</tr>
<tr>
<td>6419-19-8</td>
<td>Aminotris(methyleneephosphonic acid)</td>
</tr>
<tr>
<td>6423-43-4</td>
<td>Propylene glycol dinitrate</td>
</tr>
<tr>
<td>6440-58-0</td>
<td>1,3-Dimethylol-5,5-dimethyl hydantoin</td>
</tr>
<tr>
<td>6754-13-8</td>
<td>Sesquiterpene lactones: Helenalin</td>
</tr>
<tr>
<td>6789-99-7</td>
<td>Tetrahydrobenzotriazole</td>
</tr>
<tr>
<td>7085-85-0</td>
<td>Ethyl 2-cyanoacrylate</td>
</tr>
<tr>
<td>7397-62-8</td>
<td>Hydroxyacetic acid butyl ester</td>
</tr>
<tr>
<td>7411-49-6</td>
<td>3,3'-Diaminobenzidine and its tetrahydrochloride</td>
</tr>
<tr>
<td>7429-90-5</td>
<td>Aluminium (Announcement list)</td>
</tr>
<tr>
<td>7439-92-1</td>
<td>Lead</td>
</tr>
<tr>
<td>CAS number</td>
<td>Substance</td>
</tr>
<tr>
<td>-----------</td>
<td>-----------</td>
</tr>
<tr>
<td>7439-93-2</td>
<td>Lithium</td>
</tr>
<tr>
<td>7439-96-5</td>
<td>Manganese</td>
</tr>
<tr>
<td>7439-97-6</td>
<td>Mercury</td>
</tr>
<tr>
<td>7439-98-7</td>
<td>Molybdenum</td>
</tr>
<tr>
<td>7440-02-0</td>
<td>Nickel</td>
</tr>
<tr>
<td>7440-05-3</td>
<td>Palladium</td>
</tr>
<tr>
<td>7440-06-4</td>
<td>Platinum compounds (Chloroplatinates)</td>
</tr>
<tr>
<td>7440-16-6</td>
<td>Rhodium</td>
</tr>
<tr>
<td>7440-22-4</td>
<td>Silver</td>
</tr>
<tr>
<td>7440-24-6</td>
<td>Strontium</td>
</tr>
<tr>
<td>7440-25-7</td>
<td>Tantalum</td>
</tr>
<tr>
<td>7440-28-0</td>
<td>Thallium, soluble compounds</td>
</tr>
<tr>
<td>7440-31-5</td>
<td>Tin</td>
</tr>
<tr>
<td>7440-33-7</td>
<td>Tungsten</td>
</tr>
<tr>
<td>7440-36-0</td>
<td>Antimony</td>
</tr>
<tr>
<td>7440-38-2</td>
<td>Arsenic</td>
</tr>
<tr>
<td>7440-39-3</td>
<td>Barium compounds (soluble)</td>
</tr>
<tr>
<td>7440-41-7</td>
<td>Beryllium</td>
</tr>
<tr>
<td>7440-43-9</td>
<td>Cadmium</td>
</tr>
<tr>
<td>7440-47-3</td>
<td>Chromium</td>
</tr>
<tr>
<td>7440-48-4</td>
<td>Cobalt</td>
</tr>
<tr>
<td>7440-50-8</td>
<td>Copper</td>
</tr>
<tr>
<td>7440-54-2</td>
<td>Gadolinium</td>
</tr>
<tr>
<td>7440-57-5</td>
<td>Gold</td>
</tr>
<tr>
<td>7440-58-6</td>
<td>Hafnium</td>
</tr>
<tr>
<td>7440-61-1</td>
<td>Uranium</td>
</tr>
<tr>
<td>7440-62-2</td>
<td>Vanadium</td>
</tr>
<tr>
<td>7440-65-5</td>
<td>Yttrium</td>
</tr>
<tr>
<td>7440-66-6</td>
<td>Zinc</td>
</tr>
<tr>
<td>7440-67-7</td>
<td>Zirconium</td>
</tr>
<tr>
<td>7440-74-6</td>
<td>Indium (Announcement list)</td>
</tr>
<tr>
<td>7446-09-5</td>
<td>Sulfur dioxide</td>
</tr>
<tr>
<td>7553-56-2</td>
<td>Iodine</td>
</tr>
<tr>
<td>7572-29-4</td>
<td>Dichloroacetylene</td>
</tr>
<tr>
<td>7620-77-1</td>
<td>Lithium-12-hydroxystearate</td>
</tr>
<tr>
<td>7631-86-9</td>
<td>Silica, amorphous a) colloidal amorphous silica [7631-86-9] including pyrogenic [112945-52-5] and wet process silica [7631-86-9] and diatomaceous earth (uncalcined) [61790-53-2]</td>
</tr>
<tr>
<td>7637-07-2</td>
<td>Boron trifluoride</td>
</tr>
<tr>
<td>7647-01-0</td>
<td>Hydrogen chloride</td>
</tr>
<tr>
<td>7647-10-1</td>
<td>Palladium: Palladium chloride</td>
</tr>
<tr>
<td>7659-86-1</td>
<td>2-Ethylhexyl mercaptocetate</td>
</tr>
<tr>
<td>7664-38-2</td>
<td>Phosphoric acid</td>
</tr>
<tr>
<td>7664-39-3</td>
<td>Hydrogen fluoride</td>
</tr>
<tr>
<td>7664-41-7</td>
<td>Ammonia</td>
</tr>
<tr>
<td>7664-93-9</td>
<td>Sulfuric acid</td>
</tr>
<tr>
<td>7665-72-7</td>
<td>tert-Butyl glycidyl ether</td>
</tr>
<tr>
<td>7697-37-2</td>
<td>Nitric acid</td>
</tr>
<tr>
<td>7718-54-9</td>
<td>Nickel and nickel compounds: Nickel chloride</td>
</tr>
<tr>
<td>7719-12-2</td>
<td>Phosphorus trichloride</td>
</tr>
<tr>
<td>7722-84-1</td>
<td>Hydrogen peroxide</td>
</tr>
<tr>
<td>7723-14-0</td>
<td>Phosphorus, red</td>
</tr>
<tr>
<td>7726-95-6</td>
<td>Bromine</td>
</tr>
<tr>
<td>7727-43-7</td>
<td>Barium sulfate</td>
</tr>
<tr>
<td>7727-54-0</td>
<td>Ammonium persulfate</td>
</tr>
<tr>
<td>7747-35-5</td>
<td>5-Ethyl-3,7-dioxo-1-azabicyclo[3.3.0]octane (EDAO)</td>
</tr>
<tr>
<td>CAS number</td>
<td>Substance</td>
</tr>
<tr>
<td>------------</td>
<td>-------------------------------------------------------------</td>
</tr>
<tr>
<td>7773-06-0</td>
<td>Ammonium sulfamate</td>
</tr>
<tr>
<td>7778-18-9</td>
<td>Calcium sulfate</td>
</tr>
<tr>
<td>7778-39-4</td>
<td>Arsenic: Arsenic acid</td>
</tr>
<tr>
<td>7778-44-1</td>
<td>Arsenic: Calcium arsenate</td>
</tr>
<tr>
<td>7779-27-3</td>
<td>1,3,5-Triethylhexahydro-1,3,5-triazine</td>
</tr>
<tr>
<td>7782-41-4</td>
<td>Fluorine</td>
</tr>
<tr>
<td>7782-42-5</td>
<td>Graphite</td>
</tr>
<tr>
<td>7782-49-2</td>
<td>Selenium</td>
</tr>
<tr>
<td>7782-50-5</td>
<td>Chlorine</td>
</tr>
<tr>
<td>7782-65-2</td>
<td>Germanium tetrahydride</td>
</tr>
<tr>
<td>7782-79-8</td>
<td>Hydrazoic acid</td>
</tr>
<tr>
<td>7783-06-4</td>
<td>Hydrogen sulfide</td>
</tr>
<tr>
<td>7783-07-5</td>
<td>Hydrogen selenide</td>
</tr>
<tr>
<td>7784-42-1</td>
<td>Arsine</td>
</tr>
<tr>
<td>7784-46-5</td>
<td>Arsenic: Sodium arsenite</td>
</tr>
<tr>
<td>7786-34-7</td>
<td>Mevinphos</td>
</tr>
<tr>
<td>7786-81-4</td>
<td>Nickel and nickel compounds: Nickel sulfate</td>
</tr>
<tr>
<td>7790-91-2</td>
<td>Chlorine trifluoride</td>
</tr>
<tr>
<td>7803-49-8</td>
<td>Hydroxylamine</td>
</tr>
<tr>
<td>7803-51-2</td>
<td>Phosphine</td>
</tr>
<tr>
<td>7803-52-3</td>
<td>Stibine</td>
</tr>
<tr>
<td>7803-57-8</td>
<td>Hydrazine hydrate</td>
</tr>
<tr>
<td>8001-31-8</td>
<td>Coconut oil</td>
</tr>
<tr>
<td>8001-35-2</td>
<td>Chlorinated camphene</td>
</tr>
<tr>
<td>8001-54-5</td>
<td>Benzalkonium chloride</td>
</tr>
<tr>
<td>8002-26-4</td>
<td>Tall oil, distilled</td>
</tr>
<tr>
<td>8003-34-7</td>
<td>Pyrethrum</td>
</tr>
<tr>
<td>8006-64-2</td>
<td>Turpentine</td>
</tr>
<tr>
<td>8007-18-9</td>
<td>Nickel titanic yellow pigment</td>
</tr>
<tr>
<td>8008-20-6</td>
<td>Kerosine (petroleum)</td>
</tr>
<tr>
<td>8022-00-2</td>
<td>Demeton-methyl</td>
</tr>
<tr>
<td>8042-47-5</td>
<td>White mineral oil (pharmaceuticalal)</td>
</tr>
<tr>
<td>8050-09-7</td>
<td>Rosin (colophony)</td>
</tr>
<tr>
<td>8052-42-4</td>
<td>Bitumen (high-temperature processing, vapours and aerosols)</td>
</tr>
<tr>
<td>8065-48-3</td>
<td>Demeton</td>
</tr>
<tr>
<td>9000-50-4</td>
<td>Oakmoss extracts</td>
</tr>
<tr>
<td>9001-00-7</td>
<td>Bromelain</td>
</tr>
<tr>
<td>9001-73-4</td>
<td>Papain</td>
</tr>
<tr>
<td>9001-75-6</td>
<td>Pepsin</td>
</tr>
<tr>
<td>9002-07-7</td>
<td>Trypsin and Chymotrypsin</td>
</tr>
<tr>
<td>9002-84-0</td>
<td>Polytetrafluoroethene</td>
</tr>
<tr>
<td>9002-86-2</td>
<td>Polyvinyl chloride</td>
</tr>
<tr>
<td>9003-01-4</td>
<td>Acrylic acid polymer (neutralized, cross-linked)</td>
</tr>
<tr>
<td>9003-11-6</td>
<td>Polyethylenepolypropylene glycol</td>
</tr>
<tr>
<td>9003-13-8</td>
<td>Poly(propylene glycol) n-butyl ether</td>
</tr>
<tr>
<td>9003-27-4</td>
<td>Polybutenes and Polyisobutenes: Polyisobutenes</td>
</tr>
<tr>
<td>9003-29-6</td>
<td>Polybutenes and Polyisobutenes: Polybutenes</td>
</tr>
<tr>
<td>9004-07-3</td>
<td>Trypsin and Chymotrypsin</td>
</tr>
<tr>
<td>9004-98-2</td>
<td>Polyoxyethylene oleyl ether</td>
</tr>
<tr>
<td>9006-04-6</td>
<td>Natural rubber latex</td>
</tr>
<tr>
<td>9006-65-9</td>
<td>Polydimethyl siloxanes, linear</td>
</tr>
<tr>
<td>9014-01-1</td>
<td>Subtilisins</td>
</tr>
<tr>
<td>9016-00-6</td>
<td>Polydimethyl siloxanes, linear</td>
</tr>
<tr>
<td>9016-87-9</td>
<td>“polymeric MDI”</td>
</tr>
<tr>
<td>10024-97-2</td>
<td>Nitrous oxide</td>
</tr>
<tr>
<td>10025-67-9</td>
<td>Sulfur monochloride</td>
</tr>
<tr>
<td>CAS number</td>
<td>Substance</td>
</tr>
<tr>
<td>------------</td>
<td>-----------</td>
</tr>
<tr>
<td>10025-87-3</td>
<td>Phosphorus oxychloride</td>
</tr>
<tr>
<td>10026-13-8</td>
<td>Phosphorus pentachloride</td>
</tr>
<tr>
<td>10026-24-1</td>
<td>Cobalt: Cobalt(II) sulfate·7 H₂O</td>
</tr>
<tr>
<td>10028-15-6</td>
<td>Ozone</td>
</tr>
<tr>
<td>10035-10-6</td>
<td>Hydrogen bromide</td>
</tr>
<tr>
<td>10043-35-3</td>
<td>Boric acid</td>
</tr>
<tr>
<td>10049-04-4</td>
<td>Chlorine dioxide</td>
</tr>
<tr>
<td>10102-43-9</td>
<td>Nitrogen monoxide</td>
</tr>
<tr>
<td>10102-44-0</td>
<td>Nitrogen dioxide</td>
</tr>
<tr>
<td>10222-01-2</td>
<td>2,2-Dibromo-2-cyanacetamide</td>
</tr>
<tr>
<td>10254-57-6</td>
<td>Methylene bis(dibutylthiocarbamate)</td>
</tr>
<tr>
<td>10595-95-6</td>
<td>N-Nitrosomethylethylamine</td>
</tr>
<tr>
<td>10605-21-7</td>
<td>Carbendazim</td>
</tr>
<tr>
<td>11070-44-3</td>
<td>Methyltetrahydrophthalic anhydride</td>
</tr>
<tr>
<td>11097-68-0</td>
<td>Aluminium chlorohydrate (Announcement list)</td>
</tr>
<tr>
<td>12011-76-6</td>
<td>Dawsonite</td>
</tr>
<tr>
<td>12030-97-6</td>
<td>Potassium titanates (fibrous dust): Potassium titanate</td>
</tr>
<tr>
<td>12035-36-8</td>
<td>Nickel and nickel compounds: Nickel dioxode</td>
</tr>
<tr>
<td>12035-72-2</td>
<td>Nickel and nickel compounds: Nickel sulfide</td>
</tr>
<tr>
<td>12036-23-6</td>
<td>Zirconium dioxide</td>
</tr>
<tr>
<td>12054-48-7</td>
<td>Nickel and nickel compounds: Nickel hydroxide</td>
</tr>
<tr>
<td>12056-46-1</td>
<td>Potassium titanates (fibrous dust): Potassium titanate</td>
</tr>
<tr>
<td>12056-49-4</td>
<td>Potassium titanates (fibrous dust): Potassium titanate</td>
</tr>
<tr>
<td>12056-51-8</td>
<td>Potassium titanates (fibrous dust): Potassium titanate</td>
</tr>
<tr>
<td>12174-11-7</td>
<td>Attapulgite</td>
</tr>
<tr>
<td>12179-04-3</td>
<td>Boric acid: Sodium tetraborate pentahydrate</td>
</tr>
<tr>
<td>12185-10-3</td>
<td>Phosphorus, white/yellow</td>
</tr>
<tr>
<td>12286-12-3</td>
<td>Magnesium oxide sulfate</td>
</tr>
<tr>
<td>12298-43-0</td>
<td>Hallowsite</td>
</tr>
<tr>
<td>12427-38-2</td>
<td>Manganous ethylenebis(dithiocarbamate) (Maneb)</td>
</tr>
<tr>
<td>12510-42-8</td>
<td>Erionite</td>
</tr>
<tr>
<td>12604-58-9</td>
<td>Ferrovanadium</td>
</tr>
<tr>
<td>13007-92-6</td>
<td>Chromium carbonyl</td>
</tr>
<tr>
<td>13048-33-4</td>
<td>1,6-Hexanediol diacrylate</td>
</tr>
<tr>
<td>13360-57-1</td>
<td>Dimethylsulfamoxy chloride</td>
</tr>
<tr>
<td>13463-39-3</td>
<td>Nickel carbonyl (Announcement list)</td>
</tr>
<tr>
<td>13463-40-6</td>
<td>Iron pentacarbonyl</td>
</tr>
<tr>
<td>13463-41-7</td>
<td>Zinc pyrithione</td>
</tr>
<tr>
<td>13463-67-7</td>
<td>Titanium dioxide</td>
</tr>
<tr>
<td>13464-58-9</td>
<td>Arsenic: Arsenious acid</td>
</tr>
<tr>
<td>13494-80-9</td>
<td>Tellurium</td>
</tr>
<tr>
<td>13838-16-9</td>
<td>Enflurane</td>
</tr>
<tr>
<td>13952-84-6</td>
<td>sec-Butylamine</td>
</tr>
<tr>
<td>13983-17-0</td>
<td>Wollastonite</td>
</tr>
<tr>
<td>14265-45-3</td>
<td>Sulfites</td>
</tr>
<tr>
<td>14464-46-1</td>
<td>Silica, crystalline: Cristobalite</td>
</tr>
<tr>
<td>14484-64-1</td>
<td>Ferbam</td>
</tr>
<tr>
<td>14548-60-8</td>
<td>Benzyl alcohol mono(poly)hemiformal</td>
</tr>
<tr>
<td>14807-96-6</td>
<td>Talc</td>
</tr>
<tr>
<td>14808-60-7</td>
<td>Silica, crystalline: Quartz</td>
</tr>
<tr>
<td>14861-17-7</td>
<td>4-(2,4-Dichlorophenoxy)benzenamine</td>
</tr>
<tr>
<td>15141-18-1</td>
<td>Disperse blue 106/124</td>
</tr>
<tr>
<td>15159-40-7</td>
<td>N-Chloroformylmorpholine</td>
</tr>
<tr>
<td>15467-20-6</td>
<td>Nitrilotriacetic acid: Disodium nitrilotriacetate</td>
</tr>
<tr>
<td>15468-32-3</td>
<td>Silica, crystalline: Tridymite</td>
</tr>
<tr>
<td>15501-74-3</td>
<td>Sepiolite (fibrous dust): Sepiolite</td>
</tr>
<tr>
<td>CAS number</td>
<td>Substance</td>
</tr>
<tr>
<td>------------</td>
<td>-----------</td>
</tr>
<tr>
<td>15625-89-5</td>
<td>Trimethylolpropane triacrylate</td>
</tr>
<tr>
<td>15627-09-5</td>
<td>N-Cyclohexylhydroxy-diazen-1-oxide, copper salt</td>
</tr>
<tr>
<td>15827-60-8</td>
<td>Diethylenetriaminepenta(methyleneephosphonic acid)</td>
</tr>
<tr>
<td>15922-78-8</td>
<td>Sodium pyrithione</td>
</tr>
<tr>
<td>16065-83-1</td>
<td>Chromium(III) compounds</td>
</tr>
<tr>
<td>16096-31-4</td>
<td>Diglycidyl hexanediol</td>
</tr>
<tr>
<td>16812-54-7</td>
<td>Nickel and nickel compounds: Nickel sulfide</td>
</tr>
<tr>
<td>16984-48-8</td>
<td>Fluorides</td>
</tr>
<tr>
<td>17702-41-9</td>
<td>Decaborane</td>
</tr>
<tr>
<td>17804-35-2</td>
<td>Benomyl</td>
</tr>
<tr>
<td>17831-71-9</td>
<td>Tetraethylene glycol diacrylate</td>
</tr>
<tr>
<td>18307-23-8</td>
<td>Sepiolite (fibrous dust): Sepiolite</td>
</tr>
<tr>
<td>18540-29-9</td>
<td>Chromium(VI) compounds</td>
</tr>
<tr>
<td>18662-53-8</td>
<td>Nitrilotriacetic acid: Trisodium nitrilotriacetate monohydrate</td>
</tr>
<tr>
<td>18994-66-6</td>
<td>Nitrilotriacetic acid: Monosodium nitrilotriacetate</td>
</tr>
<tr>
<td>19287-45-7</td>
<td>Diborane</td>
</tr>
<tr>
<td>19430-93-4</td>
<td>1H,1H,2H-Perfluorohexene</td>
</tr>
<tr>
<td>19624-22-7</td>
<td>Pentaborane</td>
</tr>
<tr>
<td>20018-09-1</td>
<td>4-(Diodomethylsulfonyl)-toluene</td>
</tr>
<tr>
<td>20554-84-1</td>
<td>Sesquiterpene lactones: Parthenolide</td>
</tr>
<tr>
<td>20706-25-6</td>
<td>2-Propanoyl methyl acetate</td>
</tr>
<tr>
<td>20816-12-0</td>
<td>Osmium tetroxide</td>
</tr>
<tr>
<td>21645-51-2</td>
<td>Aluminium-, Aluminium oxide- and Aluminium hydroxide-containing dusts</td>
</tr>
<tr>
<td>21652-27-7</td>
<td>1-Hydroxyethyl-2-heptadecenyl-imidazoline</td>
</tr>
<tr>
<td>22398-80-7</td>
<td>Indium phosphate</td>
</tr>
<tr>
<td>23209-59-8</td>
<td>Calcium sodium metaphosphate</td>
</tr>
<tr>
<td>23255-03-0</td>
<td>Nitrilotriacetic acid: Disodium nitrilotriacetate monohydrate</td>
</tr>
<tr>
<td>23696-28-8</td>
<td>Olquindox (N-(2-Hydroxyethyl)-3-methyl-2-quinoxalinecarboxamide 1,4-dioxide)</td>
</tr>
<tr>
<td>23971-84-8</td>
<td>Sesquiterpene lactones: Anthecotulide</td>
</tr>
<tr>
<td>24448-20-2</td>
<td>Bisphenol A ethoxylate dimethacrylate</td>
</tr>
<tr>
<td>25013-15-4</td>
<td>Methyl styrene (all isomers)</td>
</tr>
<tr>
<td>25013-16-5</td>
<td>tert-Butyl-4-hydroxyanisole (BHA)</td>
</tr>
<tr>
<td>25154-54-5</td>
<td>Dinitrobenzene (all isomers)</td>
</tr>
<tr>
<td>25254-50-6</td>
<td>N,N,N’-Tris(β-hydroxypropyl)hexahydro-1,3,5-triazine (Announcement list)</td>
</tr>
<tr>
<td>25265-71-8</td>
<td>Dipropylene glycol</td>
</tr>
<tr>
<td>25321-14-6</td>
<td>Dinitrotoluene (mixtures of isomers)</td>
</tr>
<tr>
<td>25322-68-3</td>
<td>Polyethylen glycol (average molecular weight 200–600)</td>
</tr>
<tr>
<td>25322-69-4</td>
<td>Polypylene glycol (PPG)</td>
</tr>
<tr>
<td>25340-17-4</td>
<td>Diethylbenzene: Diethylbenzene, Mixture [25340-17-4] 1,3-Diethylbenzene [141-93-5] 1,4-Diethylbenzene [105-05-5]</td>
</tr>
<tr>
<td>25551-13-7</td>
<td>Trimethylbenzene (all isomers)</td>
</tr>
<tr>
<td>25584-83-2</td>
<td>Acrylic acid hydroxypropyl ester (all isomers)</td>
</tr>
<tr>
<td>25639-42-3</td>
<td>Methylcyclohexanol (all isomers)</td>
</tr>
<tr>
<td>26125-61-1</td>
<td>p-Aramid</td>
</tr>
<tr>
<td>26172-55-4</td>
<td>5-Chloro-2-methyl-2,3-dihydroisothiazol-3-one and 2-Methyl-2,3-dihydroisothiazol-3-one</td>
</tr>
<tr>
<td>26444-49-5</td>
<td>Diphenyl cresyl phosphate</td>
</tr>
<tr>
<td>26447-14-3</td>
<td>Cresyl glycidyl ether</td>
</tr>
<tr>
<td>26471-62-5</td>
<td>Toluene diisocyanates: Toluene diisocyanate, mixture</td>
</tr>
<tr>
<td>26523-78-4</td>
<td>Tris(nonylphenyl) phosphate</td>
</tr>
<tr>
<td>26530-20-1</td>
<td>2-Octyl-4-isothiazolin-3-one</td>
</tr>
<tr>
<td>26628-22-8</td>
<td>Sodium azide</td>
</tr>
<tr>
<td>26636-01-1</td>
<td>Methylin tin compounds : Dimethylin bis(isooctylmercaptopoacetate) (DMT(IOMA)2)</td>
</tr>
<tr>
<td>26675-46-7</td>
<td>Isoflurane</td>
</tr>
<tr>
<td>26761-40-0</td>
<td>Diisodecyl phthalate</td>
</tr>
<tr>
<td>CAS number</td>
<td>Substance</td>
</tr>
<tr>
<td>------------</td>
<td>------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>26780-96-1</td>
<td>1,2-Dihydro-2,2,4-trimethyl-quinoline polymer</td>
</tr>
<tr>
<td>27208-37-3</td>
<td>Cyclopenta(cd)pyrene</td>
</tr>
<tr>
<td>27213-78-1</td>
<td>p-tert-Butylcatechol</td>
</tr>
<tr>
<td>27253-26-5</td>
<td>Diisotridecyl phthalate</td>
</tr>
<tr>
<td>27458-92-0</td>
<td>Isotridecanol</td>
</tr>
<tr>
<td>27458-93-1</td>
<td>Isooctadecanol</td>
</tr>
<tr>
<td>27478-34-8</td>
<td>Dinitronaphthalene (all isomers)</td>
</tr>
<tr>
<td>27579-97-1</td>
<td>Sesquiterpene lactones: (+)-Frullanolide and (-)-Frullanolide</td>
</tr>
<tr>
<td>28272-18-6</td>
<td>Sesquiterpene lactones: Pyrethrosin</td>
</tr>
<tr>
<td>28523-86-6</td>
<td>Sevoflurane</td>
</tr>
<tr>
<td>28553-12-0</td>
<td>Diisononyl phthalate (Announcement list)</td>
</tr>
<tr>
<td>28768-32-3</td>
<td>Tetraglycidyl-4,4’-methyleneedianiline</td>
</tr>
<tr>
<td>29118-24-9</td>
<td>trans-1,3,3,3-Tetrafluoropropene</td>
</tr>
<tr>
<td>29222-48-8</td>
<td>Trimethylpentane (all isomers)</td>
</tr>
<tr>
<td>29385-43-1</td>
<td>Methyl-1H-benzotriazole</td>
</tr>
<tr>
<td>30618-84-9</td>
<td>Glycerol monothioglycolate</td>
</tr>
<tr>
<td>30899-19-5</td>
<td>Pentanol (isomers): Mixture of isomers, Pentanol</td>
</tr>
<tr>
<td>31027-31-3</td>
<td>4-Isopropylphenyl isocyanate</td>
</tr>
<tr>
<td>31565-23-8</td>
<td>Di(tert-dodecyl)pentasulfide and Di(tert-dodecyl)polysulfide</td>
</tr>
<tr>
<td>31570-04-0</td>
<td>Tris(2,4-ditert-butylphenyl) phosphite</td>
</tr>
<tr>
<td>31906-04-4</td>
<td>4-(4-Hydroxy-4-methyl penty)-3-cyclohexene-1-carboxaldehyde (Lyral)</td>
</tr>
<tr>
<td>32687-78-8</td>
<td>3-(3,5-Di-tert-butyl-4-hydroxyphenyl)-N’-[3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionyl]propanoylhydrazide</td>
</tr>
<tr>
<td>33204-39-6</td>
<td>Sesquiterpene lactones: Arteglasin A</td>
</tr>
<tr>
<td>34590-94-8</td>
<td>Dipropylene glycol monomethyl ether</td>
</tr>
<tr>
<td>35001-25-3</td>
<td>Sesquiterpene lactones: Laurenobiolide</td>
</tr>
<tr>
<td>35074-77-2</td>
<td>Hexamethylene bis(3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionate)</td>
</tr>
<tr>
<td>35554-44-0</td>
<td>1-(2-Allyloxy)-2-(2,4-dichlorophenyl)ethyl-1H-imidazole</td>
</tr>
<tr>
<td>35691-65-7</td>
<td>1,2-Dibromo-2,4-dicyanobutane</td>
</tr>
<tr>
<td>36653-82-4</td>
<td>1-Hexadecanol</td>
</tr>
<tr>
<td>37278-89-0</td>
<td>Xylanases</td>
</tr>
<tr>
<td>40776-40-7</td>
<td>Sesquiterpene lactones: (+)-Frullanolide and (-)-Frullanolide</td>
</tr>
<tr>
<td>41484-35-9</td>
<td>2,2’-Thiodiethylene Bis[3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionate]</td>
</tr>
<tr>
<td>41683-62-9</td>
<td>1,2-Dichloromethyloxethane</td>
</tr>
<tr>
<td>42978-66-5</td>
<td>Tripropylene glycol diacrylate</td>
</tr>
<tr>
<td>53036-54-0</td>
<td>Di(2-propylheptyl) phthalate</td>
</tr>
<tr>
<td>53469-21-9</td>
<td>Chlorinated diphenyls</td>
</tr>
<tr>
<td>53980-88-4</td>
<td>5(or 6)-Carboxy-4-hexylcyclohex-2-ene-1-octanoic acid</td>
</tr>
<tr>
<td>54208-63-8</td>
<td>Bisphenol F diglycidyl ether: o,o’-Bisphenol F diglycidylether</td>
</tr>
<tr>
<td>54839-24-6</td>
<td>1-Ethoxy-2-propyl acetate</td>
</tr>
<tr>
<td>54849-38-6</td>
<td>Methylin compounds : Methylin tris(isoctylmercaptoacetate) (MMT(1OMA)3)</td>
</tr>
<tr>
<td>55406-53-6</td>
<td>3-Iodo-2-propynyl butylcarbamate</td>
</tr>
<tr>
<td>55720-99-5</td>
<td>Chlorinated diphenyl oxide</td>
</tr>
<tr>
<td>57041-67-0</td>
<td>Desflurane</td>
</tr>
<tr>
<td>57469-07-5</td>
<td>Bisphenol F diglycidyl ether: o,p’-Bisphenol F diglycidylether</td>
</tr>
<tr>
<td>57583-35-4</td>
<td>Methylin compounds : Dimethyltin bis(2-ethylhexylmercaptoacetate) (DMT(2-EHMA)x)</td>
</tr>
<tr>
<td>57855-77-3</td>
<td>Calcium bis(dinonylnaphthalenesulphonate)</td>
</tr>
<tr>
<td>59118-99-9</td>
<td>Methyltin compounds : Bis[methyltin di(2-mercaptoethyloleate)]sulfide</td>
</tr>
<tr>
<td>59231-34-4</td>
<td>Isodecyl oleate</td>
</tr>
<tr>
<td>59766-31-3</td>
<td>Potassium titanates (fibrous dust): Potassium titanate</td>
</tr>
<tr>
<td>61789-36-4</td>
<td>Naphthenic acids and sodium, calcium, potassium napthenates</td>
</tr>
<tr>
<td>61789-86-4</td>
<td>Petroleum sulfonates, calcium salts (technical mixture in mineral oil)</td>
</tr>
<tr>
<td>61790-13-4</td>
<td>Naphthenic acids and sodium, calcium, potassium napthenates</td>
</tr>
<tr>
<td>63148-62-9</td>
<td>Polydimethyl siloxanes, linear</td>
</tr>
<tr>
<td>63449-39-8</td>
<td>Chlorinated paraffins</td>
</tr>
<tr>
<td>CAS number</td>
<td>Substance</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>64741-56-6</td>
<td>Bitumen (high-temperature processing, vapours and aerosols)</td>
</tr>
<tr>
<td>64742-47-8</td>
<td>Distillates (petroleum)</td>
</tr>
<tr>
<td>64742-48-9</td>
<td>Naphtha (petroleum)</td>
</tr>
<tr>
<td>64742-93-4</td>
<td>Bitumen (high-temperature processing, vapours and aerosols)</td>
</tr>
<tr>
<td>65997-15-1</td>
<td>Portland cement dust</td>
</tr>
<tr>
<td>66072-08-0</td>
<td>Naphthenic acids and sodium, calcium, potassium napthenates</td>
</tr>
<tr>
<td>66204-44-2</td>
<td>N,N'-Methylene-bis(5-methylazolide)</td>
</tr>
<tr>
<td>66603-10-9</td>
<td>Cyclohexylhydroxydiazone-1-oxide, potassium salt</td>
</tr>
<tr>
<td>68359-37-5</td>
<td>Cyfluthrin</td>
</tr>
<tr>
<td>68411-46-1</td>
<td>Diphenylamine, octylated (Benzenamine, N-phenyl-, reaction products with 2,4,4-trimethylpentene)</td>
</tr>
<tr>
<td>68425-15-0</td>
<td>Di(tert-dodecyl)pentasulfide and Di(tert-dodecyl)polysulfide</td>
</tr>
<tr>
<td>68516-81-4</td>
<td>Disperse blue 106/124</td>
</tr>
<tr>
<td>68583-56-2</td>
<td>Di(tert-dodecyl)pentasulfide and Di(tert-dodecyl)polysulfide</td>
</tr>
<tr>
<td>68608-26-4</td>
<td>Petroleum sulfonates, sodium salts</td>
</tr>
<tr>
<td>68649-11-6</td>
<td>Polyalphaolefins, several CAS Nos, e.g.</td>
</tr>
<tr>
<td>68920-66-1</td>
<td>Fatty alcohol ethoxylates, C16–18 and C18-unsaturated (Announcement list)</td>
</tr>
<tr>
<td>68921-45-9</td>
<td>Diphenylamine, reaction products with styrene and 2,4,4-trimethylpentene</td>
</tr>
<tr>
<td>68937-41-7</td>
<td>Triphenyl phosphate, isopropylated</td>
</tr>
<tr>
<td>68958-92-9</td>
<td>Bis[O,O-bis(2-ethylhexyl) dithiophosphorato-S,S’]dioxodi-μ-thioxodimolybdenum (Announcement list)</td>
</tr>
<tr>
<td>69669-44-9</td>
<td>Alkyl benzenesulfonates C10-C14, linear</td>
</tr>
<tr>
<td>70657-70-4</td>
<td>2-Methoxypropylacetate-1</td>
</tr>
<tr>
<td>72030-25-2</td>
<td>Bis[O,O-bis(2-ethylhexyl) dithiophosphorato-S,S’]dioxodi-μ-thioxodimolybdenum (Announcement list)</td>
</tr>
<tr>
<td>72623-83-7</td>
<td>Mineral oils (petroleum), severely refined</td>
</tr>
<tr>
<td>80584-91-4</td>
<td>Triazinetriiminotrisexanoic acid</td>
</tr>
<tr>
<td>80939-62-4</td>
<td>Alkyl amines, C11–14-branched, monohexyl and dihexyl phosphates</td>
</tr>
<tr>
<td>84861-98-3</td>
<td>Aluminium chloride (Announcement list)</td>
</tr>
<tr>
<td>85117-50-6</td>
<td>Alkyl benzenesulfonates C10-C14, linear</td>
</tr>
<tr>
<td>91273-04-0</td>
<td>N,N-Bis(2-ethylhexyl)-(1,2,4-triazole-1-y)methanamine</td>
</tr>
<tr>
<td>92045-44-8</td>
<td>Mineral oils (petroleum), severely refined</td>
</tr>
<tr>
<td>92045-45-9</td>
<td>Mineral oils (petroleum), severely refined</td>
</tr>
<tr>
<td>92062-35-6</td>
<td>Mineral oils (petroleum), severely refined</td>
</tr>
<tr>
<td>94624-12-1</td>
<td>Pentanol (isomers): Mixture of isomers, Pentanol</td>
</tr>
<tr>
<td>95481-62-2</td>
<td>Dicarboxylic acid (C4-C6) dimylester, mixture</td>
</tr>
<tr>
<td>126019-82-7</td>
<td>Tris[2- or 4-]C9-C10-isoalkylphenylphosphorthioate</td>
</tr>
<tr>
<td>134954-21-5</td>
<td>Sesquiterpene lactones: α-Peroxyachifolide</td>
</tr>
<tr>
<td>293733-21-8</td>
<td>6-Amino-2-ethoxynaphthalene</td>
</tr>
</tbody>
</table>
Members of the Commission and Permanent Guest Contributors

Members

Professorin Dr. Andrea Hartwig (Vorsitzende), Karlsruher Institut für Technologie (KIT), Institut für angewandte Biowissenschaften, Abteilung Lebensmittelchemie und Toxikologie, Adenauerring 20a, Geb. 50.41, 76131 Karlsruhe

Professor Dr. phil. nat. et med. habil. Michael Arand, Universität Zürich, Institut für Pharmakologie und Toxikologie, Winterthurerstraße 190, 8057 Zürich, Schweiz

Professor Dr. rer. nat. Michael Bader, BASF SE, Occupational Medicine and Health Protection, GUA / CB – H 308, 67056 Ludwigshafen

Professorin Dr. rer. nat. Brunhilde Blömeke, Universität Trier, Fachbereich VI, Umwelttoxikologie, Am Universitätsring 15, 54296 Trier

Professor Dr. Thomas Brüning, Institut für Prävention und Arbeitsmedizin der Deutschen Gesetzlichen Unfallversicherung, Institut der Ruhr-Universität Bochum (IPA), Bürkle-de-la-Camp-Platz 1, 44789 Bochum

Professor Dr. med. Hans Drexler, Institut und Poliklinik für Arbeits-, Sozial- und Umweltmedizin der Friedrich-Alexander-Universität Erlangen-Nürnberg, Henkestr. 9–11, 91054 Erlangen

Professor Dr. rer. nat. Bernd Epe, Johannes-Gutenberg-Universität Mainz, FB Chemie, Pharmazie und Geowissenschaften, Institut für Pharmazie und Biochemie – Therapeutische Lebenswissenschaften, Staudingerweg 5, 55128 Mainz

Professorin Dr. med. Manigé Fartasch, Institut für Prävention und Arbeitsmedizin der Deutschen Gesetzlichen Unfallversicherung, Institut der Ruhr-Universität Bochum (IPA), Bürkle-de-la-Camp-Platz 1, 44789 Bochum

Professor Dr. rer. nat. Thomas Göen, Institut und Poliklinik für Arbeits-, Sozial- und Umweltmedizin der Friedrich-Alexander-Universität Erlangen-Nürnberg, Henkestr. 9–11, 91054 Erlangen

Professor Dr. med. Ernst Hallier, Georg-August-Universität Göttingen, Institut für Arbeits-, Sozial- und Umweltmedizin, Waldweg 37B, 37073 Göttingen

Professor Dr. rer. biol. hum. Uwe Heinrich, Fraunhofer-Institut für Toxikologie und experimentelle Medizin, Nikolai-Fuchs-Straße 1, 30625 Hannover

Dr. rer. nat. Edgar Leibold, BASF SE, GUP / P, Gebäude Z 570, Carl-Bosch-Straße 38, 67056 Ludwigshafen

Professorin Dr. med. Gabriele Leng, Currenta GmbH & Co. OHG, Sicherheit-Gesundheitsschutz – Institut für Biomonitoring, Chemiepark Leverkusen, Gebäude L9, 51368 Leverkusen
Professor Dr. med. Dipl.-Ing. Stephan Letzel, Universitätsmedizin der Johannes-Gutenberg-Universität Mainz, Institut für Arbeits-, Sozial- und Umweltmedizin, Obere Zahlbacher Straße 67, 55131 Mainz

Professor Dr. med. Rolf D. Merget, Institut für Prävention und Arbeitsmedizin der Deutschen Gesetzlichen Unfallversicherung, Institut der Ruhr-Universität Bochum (IPA), Bürkle-de-la-Camp-Platz 1, 44789 Bochum (bis August 2019)

Professor Dr. rer. nat. Bernhard Michaelke, Helmholtz-Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Abteilung Analytische BioGeoChemie, Ingolstädter Landstraße 1, 85764 Neuherberg

Privatdozentin Dr. med. Frauke Neff, Städtisches Klinikum München, Department Pathologie, Englischalkinger Straße 77, 81925 München

Dr. rer. nat. Eberhard Nies, IFA – Institut für Arbeitsschutz der Deutschen Gesetzlichen Unfallversicherung, Referat 1.5: Toxikologie der Arbeitsstoffe, Alte Heerstraße 111, 53757 Sankt Augustin

Professor Dr. med. Dennis Nowak, Klinikum der Ludwig-Maximilians-Universität München, Campus Innenstadt, Institut und Poliklinik für Arbeits- und Umweltmedizin, Ziemssenstraße 1, 80336 München

Dr. med. Dirk Pallapies, Institut für Prävention und Arbeitsmedizin der Deutschen Gesetzlichen Unfallversicherung, Institut der Ruhr-Universität Bochum (IPA), Bürkle-de-la-Camp-Platz 1, 44789 Bochum

Professor Dr. med. Albert W. Rettenmeier, Universitätsklinikum Essen, Institut für Medizinische Informatik, Biometrie und Epidemiologie (IMIBE), Hufelandstraße 55, 45122 Essen

Dr. rer. nat. Roel Schins, Leibniz-Institut für umweltmedizinische Forschung an der Heinrich-Heine-Universität Düsseldorf, Auf’m Hennekamp 50, 40225 Düsseldorf

Professorin Dr. med. Simone Schmitz-Spanke, Institut und Poliklinik für Arbeits-, Sozial- und Umweltmedizin der Friedrich-Alexander-Universität Erlangen-Nürnberg, Henkestr. 9–11, 91054 Erlangen

Professor Dr. med. Axel Schnuch, Informationsverbund Dermatologischer Kliniken (IVDK), von-Bar-Str. 2–4, 37075 Göttingen (bis Dezember 2019)

Professor Dr. rer. nat. Michael Schwarz, Eberhard-Karls-Universität Tübingen, Institut für Toxikologie, Wilhelmstraße 56, 72074 Tübingen

Professor Dr. med. Ralf Stahlmann, Charité-Universitätsmedizin Berlin, Campus Charité Mitte, Institut für Klinische Pharmakologie und Toxikologie, Luisenstraße 7, 10117 Berlin
Members and guest contributors

Professor Dr. med. Kurt Straif, International Agency for Research on Cancer, Carcinogen Identification and Evaluation, World Health Organization, 150 Cours Albert Thomas, 69372 Lyon Cedex 08, Frankreich

Privatdozent Dr. Christoph van Thriel, Leibniz-Institut für Arbeitsforschung an der TU Dortmund, Ardeystraße 67, 44139 Dortmund

Professor Dr. rer. nat. Dr. med. habil. Kurt Ulm, Technische Universität München, Klinikum Rechts der Isar, Institut für Medizinische Statistik und Epidemiologie, Ismaninger Straße 22, 81675 München

Professor Dr. med. Wolfgang Uter, Friedrich-Alexander-Universität Erlangen-Nürnberg, Institut für Medizininformatik, Biometrie und Epidemiologie, Waldstraße 6, 91054 Erlangen

Professor Dr. rer. nat. Dr. biol. hom. Dirk Walter, Universitätsklinikum Gießen und Marburg GmbH, Standort Gießen, Institut und Poliklinik für Arbeits- und Sozialmedizin, Aufweg 129 / III, 35392 Gießen

Guest Contributors

Professor Dr. rer. nat. D. Brueer, Institut für Arbeitsschutz der Deutschen Gesetzlichen Unfallversicherung (IFA), Fachbereich 2: Chemische und biologische Einwirkungen, Alte Heerstraße 111, 53757 Sankt Augustin

Dr. rer. nat. R. Habisch, Bundesanstalt für Arbeitsschutz und Arbeitsmedizin (BAuA), Friedrich-Henkel-Weg 1–25, 44149 Dortmund

Frau Dr. vet. med. A. Schulte, Bundesinstitut für Risikobewertung (BfR), Thielallee 88–92, 14195 Berlin

Program Director (Deutsche Forschungsgemeinschaft)

Frau Dr. rer. nat. K. Hartig, Deutsche Forschungsgemeinschaft, Kennedyallee 40, 53175 Bonn. Postanschrift: 53170 Bonn

Secretariat of the Commission

Dr. rer. nat. Heidrun Greim, Dr. rer. nat. Gunnar Jahnke, Dr. rer. nat. Gerlinde Schriever-Schwemmer, Karlsruher Institut für Technologie (KIT), Institut für angewandte Biowissenschaften, Abteilung Lebensmittelchemie und Toxikologie, Geb. 50.41, Adenauerring 20a, 76131 Karlsruhe

A current list of members, permanent guests and other guests is available at: https://www.dfg.de/en/dfg_profile/statutory_bodies/senate/health_hazards/index.html
Constitution and Procedures of the Permanent Commission for the Investigation of Health Hazards of Chemical Compounds in the Work Area

I.

The activity of the Commission for the Investigation of Health Hazards of Chemical Compounds in the Work Area is based on the following regulations of the statutes of the Deutsche Forschungsgemeinschaft.

§ 1

Purpose of the Association

The Deutsche Forschungsgemeinschaft (German Research Foundation, DFG) serves all branches of science and the humanities by funding research projects and facilitating national and international cooperation among researchers. It devotes particular attention to the education and advancement of young researchers. It promotes equality between men and women in the scientific and academic communities. It advises parliaments and public authorities on scientific matters and fosters relations with the private sector and between scientists and academics.

§ 11

Senate

1. The Senate is the central scientific body of the DFG. It shall deliberate and resolve, within the principles adopted by the General Assembly, all major matters of the DFG, unless they are reserved for the Joint Committee.

2. The Senate shall determine which review boards shall be formed and how they shall be structured. It shall ensure that the full range of fields in science and the humanities is covered by the review boards and that the review boards take their disciplinary research interests and interdisciplinary relationships duly into account.

3. The Senate shall consist of 39 members. The president of the German Rectors’ Conference, the president of the Union of the German Academies of Sciences and Humanities and the president of the Max Planck Society shall be ex officio members of the Senate. The remaining 36 members shall be elected by the General Assembly in a staggered rotation system. Researchers who work at institutions of higher education or other research institutions are eligible for election. The General Assembly may also elect other persons, in consideration of certain expertise relevant to the DFG. Voting shall be based on the person; elected members of the Senate shall not act as representatives of institutions. Adequate representation of the entire spectrum of research disciplines shall be sought in the composition of the elected membership.

4. For the elections, the Senate, upon recommendation by the Executive Committee and in consideration of proposals from the members of the DFG, shall prepare slates of nominations, which as a rule shall comprise three names for each vacant seat. Details shall be governed by rules of procedure.

5. If a member of the Senate leaves during his or her term of office, the Senate may coopt a replacement member from the previous slates of nominations to complete the departing member’s term of office.

6. Meetings of the Senate shall be convened and chaired by the President. The President shall convene the Senate at the request of at least one-third of its members. As a rule, the resolutions of the Senate shall be passed in the meetings. In individual cases, resolutions may also be passed by circulation (in writing, by fax or electronically) upon decision by the Executive Committee.

7. Within its mandate, the Senate may establish committees and commissions whose members need not be members of the Senate.
II.

The following principles apply for the Constitution and Procedure of the Permanent Commission for the Investigation of Health Hazards of Chemical Compounds in the Work Area:

1. The Senate has assigned to the Deutsche Forschungsgemeinschaft’s Commission for the Investigation of Health Hazards of Chemical Compounds in the Work Area the responsibility of investigating the scientific foundations for the protection of workers’ health from the effects of toxic chemicals at the workplace. The most important practical results of the Commission’s work are scientific recommendations for the establishment of MAK and BAT values, for the classification of carcinogenic substances and for the evaluation of embryotoxic and/or foetotoxic effects and of germ cell mutagens as well as for the investigation and evaluation of analytical methods for controlling exposure and for examining observance of threshold values for health protection at the workplace. In addition, the Commission investigates further current problems of hazards to health caused by occupational exposures and proposes possible appropriate solutions.

   A two-step procedure appears to be the best solution for the realization of health protection measures at the workplace which are in line with the current state of the science: The results of the Commission’s work already mentioned above are annually reviewed and published by the Deutsche Forschungsgemeinschaft. At the same time they are handed to the Bundesminister für Arbeit und Soziales who examines the recommendations, also taking nonscientific viewpoints into account, and who then makes them legally binding in an appropriate form – altered or unaltered – as a basis for health protection.

2. The Commission works in scientific freedom and independence. It is not subject to instructions regarding selection or priority setting for the examination of substances and other matters to be investigated. It is the Commission’s duty, however, to take up suggestions, in so far as they are of scientific significance, from industrial users and as far as possible to treat with precedence suggestions from the Bundesminister für Arbeit und Soziales who is responsible for health protection at the workplace.

3. The complete transparency of the Commission’s work programme is guaranteed by means of the advance announcement of planned changes and additions on the homepage of the Commission at the DFG and in the Bundesanzeiger. A most comprehensive information basis for the Commission’s recommendations is ensured by the request to supply the Commission with information and commentaries and the associated possibility of involving appropriate scientific experts in the decision-making process.

   The derivation of MAK and BAT values and the classification of carcinogenic substances or substances suspected of having carcinogenic potential and the evaluation of embryotoxic and/or foetotoxic effects and germ cell mutagens are published in the form of detailed scientific documentation (“Begründungen”).

4. The sole object of the Commission’s work is to protect, as far as possible and necessary, and in line with the most up to date scientific information, the health of workers and of their offspring. The Commission regards health as the highest value which it does not weigh up against other factors. Therefore, only scientific arguments regarding health at the workplace are considered in discussions and decision-making. Other aspects such as sociopolitical, economic, technological and other non-substance-related considerations are excluded.

5. For the reasons stated in 4., requests for participation of experts, other than those concerned with health aspects of protection at work, in the Commission’s discussions cannot be complied with.

6. At the same time the Commission does not undervalue the necessity for political decisions in the process of realizing protection at work. It does, however, reject mixing political with scientific judgements in its own work.

7. By publishing its recommendations, the Commission contributes to fulfilling the constitutional obligation of the Deutsche Forschungsgemeinschaft to provide advice on scientific matters to parliaments and public authorities. Should the Bundesministerium für Arbeit und Soziales (see 1. above) deviate in
any particular case from the recommendations, the Commission considers it essential that it makes the reasons known.

8. The presidency and governing body of the Deutsche Forschungsgemeinschaft can check observance of the rules of procedure, but ensure unchanged and immediate publication of the Commission’s results, in so far as there are no imperative opposing reasons.

III.

Newly appointed Members and Permanent Guest Contributors of the Commission for the Investigation of Health Hazards of Chemical Compounds in the Work Area receive written notice from the President of the Deutsche Forschungsgemeinschaft in which the following fundamentals of the Commission’s work are laid down:

In order to fulfil the statutory functions of the Deutsche Forschungsgemeinschaft as advisers to the legislative and executive organs, the Senate has set up Commissions for various fields of knowledge, for example, for protection at work, protection of health and protection of the environment. The Commission in which you have been appointed is one of these.

The Commissions have the responsibility of ascertaining the current state of scientific data available in the respective field and of formulating it in such a way that the government authorities to be advised are in a position to reach competent decisions on their own responsibility. To this end it is desirable that in the individual Commissions the scientific position is elaborated so that it can be upheld by all members. Such a consensus is then represented in public as the standpoint of the Deutsche Forschungsgemeinschaft.

In view of this responsibility of the Commission, scientists are appointed members ad personam in their capacity as authoritative experts and not as representatives of the institutions or companies in which they work.

As well as these members there are also permanent guest contributors working in the Commissions. Scientists and other experts from public authorities are appointed permanent guest contributors with advisory function and may take on research assignments as well as official responsibilities. As they belong to institutes potentially affected by the Commission’s advice they have no voting rights. In this way a possible conflict of interests should be avoided from the outset.

The Senate appoints the Commissions for periods of office lasting 3 years each. Members and permanent guest contributors are also appointed for three years and can be reappointed once. A further extension of a personal mandate is only possible in justified exceptional cases.

The strict division aimed at between recognition of a scientific standpoint and its “application” in the broadest sense, be it from the political, legal, economic or other social point of view, presupposes that extra-scientific problems of the government bodies the Commission is required to advise do not find admittance into the vote of the Commission. Political consequences of scientific facts, problems of realization, decisions about the reasonableness of particular risks, economic aspects, etc, do not belong within the responsibility of the Deutsche Forschungsgemeinschaft nor its Commissions.

For the procedure of the Commissions, discussions as well as data and facts referred to in the discussions are dealt with in strict confidentiality up until their publication by the Deutsche Forschungsgemeinschaft as a Report from the Commission concerned. Nobody, through appointment in a Commission, may gain a competitive advantage by exploiting advance information.

IV.

★ Procedure of the Commission for prospective new entries and changes to MAK values and Assessment Values in Biological Material

1. Prospective changes and new entries are announced one year in advance in the List of MAK and BAT Values, usually on 1st July. In addition, the new entries are published on the homepage of the Com-
mission at the DFG (https://www.dfg.de/download/pdf/dfg_improfil/gremien/senat/arbeitsstoffe/ankuendigungsliste_20_21.pdf). If necessary, in addition to the regular updates each year in July, further announcements of prospective changes and new entries can be made there at any time. In the case of changes, the type of prospective change is reported and the reason for it. On announcement of the changes the Commission requests that relevant information and comments be received.

2. Completed substance evaluations in the Sections MAK Values and Assessment Values in Biological Material are listed in detail in the “Changes and New entries” of the List of MAK and BAT Values (Appendix page I) and published on the homepage of the Commission at the DFG (List of changes and new entries in German; https://www.dfg.de/download/pdf/dfg_improfil/gremien/senat/arbeitsstoffe/aenderungen_neuaufnahmen_2020.pdf) and made known in the Bundesanzeiger. The Commission has approved these suggestions, but presents them for discussion for the period of six months. Until this date new data or scientific comments can be sent to the secretarial office of the Commission; these will be examined by the Commission and as far as is necessary taken into account for the final ratification.
Substances in the lists of MAK values and assessment values in biological material reviewed in 2019/2020

MAK Values

a) alphabetical sorting:

Antimony [7440-36-0] and its inorganic compounds except for stibine
see section XII
MAK[ml/m³]: –
MAK[mg/m³]: –
Peak lim: –
Preg gr: –
Perc abs: –
Sens: –
Carc cat: 2
does not apply for stibine
Muta cat: 3A

2-Butanethiol [513-53-1] new entry
MAK[ml/m³]: 2
MAK[mg/m³]: 7.48
Peak lim: II(2)
Preg gr: D
Perc abs: H
Sens: –
Carc cat: –
Muta cat: –

2-Butyl-1,2-benzisothiazolin-3-one [4299-07-4] new entry
see section Iib and Xc
MAK[ml/m³]: –
MAK[mg/m³]: –
Peak lim: –
Preg gr: –
Perc abs: –
Sens: Sh
Carc cat: –
Muta cat: –

Chlorothalonil [1897-45-6] Review of classification: no change
see section Iib and Xc
MAK[ml/m³]: –
MAK[mg/m³]: –
Peak lim: –
Preg gr: –
Perc abs: –
Sens: Sh
Carc cat: –
Muta cat: –

1,2-Dichloropropane [78-87-5] change
see section XII
MAK[ml/m³]: –
MAK[mg/m³]: –
Peak lim: –
Preg gr: –
Perc abs: H
Sens: –
Carc cat: 1
Muta cat: –

previous Perc abs: –
previous Carc cat: 3B
### Diethylene glycol dimethyl ether [111-96-6]

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
<th>Previous Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAK [ml/m³]</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>MAK [mg/m³]</td>
<td>5.56</td>
<td>28</td>
</tr>
<tr>
<td>Peak lim</td>
<td>II(8)</td>
<td></td>
</tr>
<tr>
<td>Preg gr</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>Perc abs</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>Sens</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>Carc cat</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>Muta cat</td>
<td>–</td>
<td></td>
</tr>
</tbody>
</table>

### 1,1-Dimethylhydrazine [57-14-7]

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
<th>Previous Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAK [ml/m³]</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>MAK [mg/m³]</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>Peak lim</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>Preg gr</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>Perc abs</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>Sens</td>
<td>Sh</td>
<td></td>
</tr>
<tr>
<td>Carc cat</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Muta cat</td>
<td>3A</td>
<td></td>
</tr>
</tbody>
</table>

### 1,2-Dimethylhydrazine [540-73-8]

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
<th>Previous Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAK [ml/m³]</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>MAK [mg/m³]</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>Peak lim</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>Preg gr</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>Perc abs</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>Sens</td>
<td>Sh</td>
<td></td>
</tr>
<tr>
<td>Carc cat</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Muta cat</td>
<td>3A</td>
<td></td>
</tr>
</tbody>
</table>

### Methyl chloride [74-87-3]

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
<th>Previous Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAK [ml/m³]</td>
<td>10</td>
<td>50</td>
</tr>
<tr>
<td>MAK [mg/m³]</td>
<td>21</td>
<td>100</td>
</tr>
<tr>
<td>Peak lim</td>
<td>II(1)</td>
<td>II(2)</td>
</tr>
<tr>
<td>Preg gr</td>
<td>D</td>
<td>B</td>
</tr>
<tr>
<td>Perc abs</td>
<td>–</td>
<td>H</td>
</tr>
<tr>
<td>Sens</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Carc cat</td>
<td>–</td>
<td>3B</td>
</tr>
<tr>
<td>Muta cat</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

### 2-Methyl-2-propanethiol [75-66-1]

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
<th>Previous Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAK [ml/m³]</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>MAK [mg/m³]</td>
<td>3.74</td>
<td></td>
</tr>
<tr>
<td>Peak lim</td>
<td>II(2)</td>
<td></td>
</tr>
<tr>
<td>Preg gr</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>Perc abs</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>Sens</td>
<td>Sh</td>
<td></td>
</tr>
<tr>
<td>Carc cat</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>Muta cat</td>
<td>–</td>
<td></td>
</tr>
</tbody>
</table>

### Monomethylhydrazine [60-34-4]

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
<th>Previous Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAK [ml/m³]</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>MAK [mg/m³]</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>Peak lim</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>Preg gr</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>Perc abs</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>Sens</td>
<td>Sh</td>
<td></td>
</tr>
<tr>
<td>Carc cat</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Muta cat</td>
<td>3B</td>
<td></td>
</tr>
</tbody>
</table>

### New Entry

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
<th>Previous Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAK [ml/m³]</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>MAK [mg/m³]</td>
<td>3.74</td>
<td></td>
</tr>
<tr>
<td>Peak lim</td>
<td>II(2)</td>
<td></td>
</tr>
<tr>
<td>Preg gr</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>Perc abs</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>Sens</td>
<td>Sh</td>
<td></td>
</tr>
<tr>
<td>Carc cat</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>Muta cat</td>
<td>–</td>
<td></td>
</tr>
</tbody>
</table>

### New Entry

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
<th>Previous Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAK [ml/m³]</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>MAK [mg/m³]</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>Peak lim</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>Preg gr</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>Perc abs</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>Sens</td>
<td>Sh</td>
<td></td>
</tr>
<tr>
<td>Carc cat</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Muta cat</td>
<td>3B</td>
<td></td>
</tr>
</tbody>
</table>

### New Entry

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
<th>Previous Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAK [ml/m³]</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>MAK [mg/m³]</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>Peak lim</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>Preg gr</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>Perc abs</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>Sens</td>
<td>Sh</td>
<td></td>
</tr>
<tr>
<td>Carc cat</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>Muta cat</td>
<td>–</td>
<td></td>
</tr>
</tbody>
</table>

### New Entry

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
<th>Previous Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAK [ml/m³]</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>MAK [mg/m³]</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>Peak lim</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>Preg gr</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>Perc abs</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>Sens</td>
<td>Sh</td>
<td></td>
</tr>
<tr>
<td>Carc cat</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>Muta cat</td>
<td>–</td>
<td></td>
</tr>
</tbody>
</table>
Peracetic acid [79-21-0] change

see section Xa

MAK[ml/m³]: 0.1
MAK[mg/m³]: 0.316
Peak lim: I(1)
Preg gr: C
Perc abs: –
Sens: –
Carc cat: 4
Muta cat: –
MAK[ml/m³]: 0.1
previous MAK[ml/m³]: –
previous MAK[mg/m³]: –
previous Peak lim: –
previous Preg gr: –
previous Carc cat: 3B
previous Muta cat: –

N-Phenyl-2-naphthylamine [135-88-6] change

see section XII

MAK[ml/m³]: –
MAK[mg/m³]: –
Peak lim: –
Preg gr: –
Perc abs: H
Sens: Sh
Carc cat: 1
Muta cat: 3A
previous Perc abs: –
previous Carc cat: 3B
previous Muta cat: –

N-Phenyl-1-naphthylamine [90-30-2] change

see section Xc

MAK[ml/m³]: –
MAK[mg/m³]: 2 I
Peak lim: II(2)
Preg gr: C
Perc abs: –
Sens: Sh
Carc cat: –
Muta cat: –
previous MAK[mg/m³]: –
previous Peak lim: –
previous Preg gr: –

Pigment Yellow 12, Pigment Yellow 13, Pigment Yellow 83 new entry

Pigment Yellow 83 [6358-85-6; 5102-83-0; 5567-15-7]

MAK[mg/m³]: 0.3 R
multiplied with the material density x 0.5;
corresponds to an assumed agglomerate density at a packing factor of 50%, see documentation
Peak lim: II(8)
Preg gr: C
Perc abs: –
Sens: –
Carc cat: 4
Muta cat: –

Toluene (Toluol) [108-88-3] change

see section XII

MAK[ml/m³]: 50
MAK[mg/m³]: 190
Peak lim: II(2)
Preg gr: C
Perc abs: H
Sens: –
Carc cat: –
Muta cat: –
original MAK[ml/m³]: 50
original MAK[mg/m³]: 190
original Peak lim: II(4)
original Preg gr: C
original Perc abs: H
original Sens: –
original Carc cat: –
original Muta cat: –

Toluene-2,4-diamine [95-80-7] change

The substance can occur simultaneously as vapour and aerosol.

see section XII

MAK[ml/m³]: –
MAK[mg/m³]: –
Peak lim: –
Preg gr: –
Perc abs: H
Sens: Sh
Carc cat: 2
Muta cat: 3B
previous MAK[ml/m³]: –
previous MAK[mg/m³]: –
previous Peak lim: –
previous Preg gr: –
previous Perc abs: H
previous Sens: Sh
previous Carc cat: –
previous Muta cat: –
Toluene diisocyanates, change

Toluene-2,4-diisocyanate [584-84-9], Toluene-2,6-diisocyanate [91-08-7] and Toluene diisocyanate, mixture [26471-62-5]
The substance can occur simultaneously as vapour and aerosol.

see section XII

MAK [ml/m³]: 0.001
MAK [mg/m³]: 0.007
Peak lim: II(1)
A momentary value of 0.005 ml/m³ (0.035 mg/m³) should not be exceeded.

Preg gr: C
Perc abs: –
Sens: Sah
Carc cat: –
Muta cat: –

Toluene diisocyanates
see section XII

MAK [ml/m³]: 0.007
MAK [mg/m³]: 0.007
Peak lim: –
previous MAK [ml/m³]: –
previous MAK [mg/m³]: –
previous Peak lim: –

The substance can occur simultaneously as vapour and aerosol.

see section XII

Triphenyl monothiophosphate [597-82-0] new entry

see section Xc

MAK [mg/m³]: 20 I
Peak lim: II(2)
Preg gr: D
Perc abs: –
Sens: –
Carc cat: –
Muta cat: –

Triphenyl phosphate [115-86-6] change

see section Xc

MAK [ml/m³]: –
MAK [mg/m³]: 10 I
Peak lim: II(2)
Preg gr: C
Perc abs: –
Sens: –
Carc cat: –
Muta cat: –

Triphenyl monothiophosphate [597-82-0] new entry

see section Xc

MAK [mg/m³]: 20 I
Peak lim: II(2)
Preg gr: D
Perc abs: –
Sens: –
Carc cat: –
Muta cat: –

Triphenyl phosphate [115-86-6] change

see section Xc

MAK [ml/m³]: –
MAK [mg/m³]: 10 I
Peak lim: II(2)
Preg gr: C
Perc abs: –
Sens: –
Carc cat: –
Muta cat: –

Xylene (all isomers) [1330-20-7] Review of classification: no change
At high levels of physical activity the observance of the BAT value should be checked regularly by biological monitoring.

see section XII

MAK [ml/m³]: 50
MAK [mg/m³]: 220
Peak lim: II(2)
Preg gr: D
Perc abs: H
Sens: –
Carc cat: –
Muta cat: –

b) sorting by MAK values and classifications:

A. MAK value previous new

1. change

Diethylene glycol dimethyl ether [111-96-6] 28 5.56
Methyl chloride [74-87-3] 100 21
Peracetic acid [79-21-0] – 0.316
see section Xa
N-Phenyl-1-naphthylamine [90-30-2] – 2 I
see section Xc
Toluene diisocyanates – 0.007
The substance can occur simultaneously as vapour and aerosol.
see section XII
Triphenyl phosphate [115-86-6] – 10 I
see section Xc
A. MAK value

2. new entry

2-Butanethiol [513-53-1]  
2-Butyl-1,2-benzisothiazolin-3-one [4299-07-4]  
2-Methyl-2-propanethiol [75-66-1]  
Pigment Yellow 12, Pigment Yellow 13, Pigment Yellow 83 [6358-85-6; 5102-83-0; 5567-15-7]

Triphenyl monothiophosphate [597-82-0]  
see section Xc  
2-Butanethiol [513-53-1]  

A. MAK value

3. Review of classification: no change

Antimony [7440-36-0] and its inorganic compounds except for stibine  
see section XII  
Chlorothalonil [1897-45-6]  
see section IIb and Xc  
1,2-Dichloropropane [78-87-5]  
see section XII  
1,1-Dimethylhydrazine [57-14-7]  
1,2-Dimethylhydrazine [540-73-8]  
Monomethylhydrazine [60-34-4]  
N-Phenyl-2-naphthylamine [135-88-6]  
see section XII  
Toluene (Toluol) [108-88-3]  
see section XII  
Toluene-2,4-diamine [95-80-7]  
The substance can occur simultaneously as vapour and aerosol.  
see section XII  
Xylene (all isomers) [1330-20-7]  
At high levels of physical activity the observance of the BAT value should be checked regularly by biological monitoring.  
see section XII  

B. Peak limitation

1. change

Methyl chloride [74-87-3]  
see section Xc  
Peracetic acid [79-21-0]  
see section Xa  
N-Phenyl-1-naphthylamine [90-30-2]  
see section Xc  
Toluene (Toluol) [108-88-3]  
see section XII  
Toluene diisocyanates  
The substance can occur simultaneously as vapour and aerosol.  
see section XII  
Triphenyl phosphate [115-86-6]  
see section Xc  

B. Peak limitation

2. new entry

2-Butanethiol [513-53-1]  
2-Butyl-1,2-benzisothiazolin-3-one [4299-07-4]  
2-Methyl-2-propanethiol [75-66-1]  
Pigment Yellow 12, Pigment Yellow 13, Pigment Yellow 83 [6358-85-6; 5102-83-0; 5567-15-7]  
Triphenyl monothiophosphate [597-82-0]  
see section Xc
B. Peak limitation

3. Review of classification: no change

Antimony [7440-36-0] and its inorganic compounds except for stibine
see section XII

Chlorothalonil [1897-45-6]
see section IIB and Xc

1,2-Dichloropropane [78-87-5]
see section XII

Diethylene glycol dimethyl ether [111-96-6]
see section XII

1,1-Dimethylhydrazine [57-14-7]

1,2-Dimethylhydrazine [540-73-8]

Monomethylhydrazine [60-34-4]

N-Phenyl-2-naphthylamine [135-88-6]
see section XII

Toluene-2,4-diamine [95-80-7]
The substance can occur simultaneously as vapour and aerosol.
see section XII

Xylene (all isomers) [1330-20-7]
At high levels of physical activity the observance of the BAT value should be checked regularly by biological monitoring.
see section XII

C. Pregnancy risk group

1. change

Methyl chloride [74-87-3]
Peracetic acid [79-21-0]
see section Xa

N-Phenyl-1-naphthylamine [90-30-2]
see section Xc

Toluene diisocyanates
The substance can occur simultaneously as vapour and aerosol.
see section XII

Triphenyl phosphate [115-86-6]
see section Xc

C. Pregnancy risk group

2. new entry

2-Butanethiol [513-53-1]

2-Butyl-1,2-benzisothiazolin-3-one [4299-07-4]
see section IIB and Xc

2-Methyl-2-propanethiol [75-66-1]

Pigment Yellow 12, Pigment Yellow 13, Pigment Yellow 83
[6358-85-6; 5102-83-0; 5567-15-7]

Triphenyl monothiophosphate [597-82-0]
see section Xc

2-Butanethiol [513-53-1] D

2-Butyl-1,2-benzisothiazolin-3-one [4299-07-4] –

2-Methyl-2-propanethiol [75-66-1] C

Pigment Yellow 12, Pigment Yellow 13, Pigment Yellow 83 C

Triphenyl monothiophosphate [597-82-0] D
C. Pregnancy risk group

3. Review of classification: no change

Antimony [7440-36-0] and its inorganic compounds except for stibine
see section XII

Chlorothalonil [1897-45-6]
see section IIb and Xc

1,2-Dichloropropane [78-87-5]
see section XII

Diethylene glycol dimethyl ether [111-96-6]
B

1,1-Dimethylhydrazine [57-14-7]

1,2-Dimethylhydrazine [540-73-8]

Monomethylhydrazine [60-34-4]

N-Phenyl-2-naphthylamine [135-88-6]
see section XII

Toluene (Toluol) [108-88-3]
see section XII

Toluene-2,4-diamine [95-80-7]
The substance can occur simultaneously as vapour and aerosol.
see section XII

Xylene (all isomers) [1330-20-7]
D

At high levels of physical activity the observance of the BAT value should be checked regularly by biological monitoring.
see section XII

D. Percutaneous absorption

1. change

1,2-Dichloropropane [78-87-5]
see section XII

Methyl chloride [74-87-3]

N-Phenyl-2-naphthylamine [135-88-6]
see section XII

D. Percutaneous absorption

2. new entry

2-Butanethiol [513-53-1] H

2-Butyl-1,2-benzisothiazolin-3-one [4299-07-4]
see section IIb and Xc

2-Methyl-2-propanethiol [75-66-1] H

Pigment Yellow 12, Pigment Yellow 13, Pigment Yellow 83
[6358-85-6; 5102-83-0; 5567-15-7]

Triphenyl monothiophosphate [597-82-0]
see section Xc
### D. Percutaneous absorption

#### 3. Review of classification: no change

<table>
<thead>
<tr>
<th>Substance</th>
<th>Previous</th>
<th>New</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antimony [7440-36-0] and its inorganic compounds except for stibine</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Chlorothalonil [1897-45-6]</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Diethylene glycol dimethyl ether [111-96-6]</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>1,1-Dimethylhydrazine [57-14-7]</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>1,2-Dimethylhydrazine [540-73-8]</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>Monomethylhydrazine [60-34-4]</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>Peracetic acid [79-21-0]</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Toluene (Toluol) [108-88-3]</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>Toluene-2,4-diamine [95-80-7]</td>
<td>H</td>
<td>H</td>
</tr>
</tbody>
</table>

The substance can occur simultaneously as vapour and aerosol.

<table>
<thead>
<tr>
<th>Substance</th>
<th>Previous</th>
<th>New</th>
</tr>
</thead>
<tbody>
<tr>
<td>Toluene diisocyanates</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

The substance can occur simultaneously as vapour and aerosol.

<table>
<thead>
<tr>
<th>Substance</th>
<th>Previous</th>
<th>New</th>
</tr>
</thead>
<tbody>
<tr>
<td>Triphenyl phosphate [115-86-6]</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Xylene (all isomers) [1330-20-7]</td>
<td>H</td>
<td>H</td>
</tr>
</tbody>
</table>

At high levels of physical activity the observance of the BAT value should be checked regularly by biological monitoring.

### E. Sensitization

#### 2. new entry

<table>
<thead>
<tr>
<th>Substance</th>
<th>Previous</th>
<th>New</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-Butanethiol [513-53-1]</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>2-Butyl-1,2-benzisothiazolin-3-one [4299-07-4]</td>
<td>Sh</td>
<td></td>
</tr>
<tr>
<td>2-Methyl-2-propanethiol [75-66-1]</td>
<td>Sh</td>
<td></td>
</tr>
<tr>
<td>Pigment Yellow 12, Pigment Yellow 13, Pigment Yellow 83</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>[6358-85-6; 5102-83-0; 5567-15-7]</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>Triphenyl monothiophosphate [597-82-0]</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>
E. Sensitization

3. Review of classification: no change

<table>
<thead>
<tr>
<th>Substance</th>
<th>Previous</th>
<th>New</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antimony</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Chlorothalonil</td>
<td>Sh</td>
<td>Sh</td>
</tr>
<tr>
<td>1,2-Dichloropropane</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Diethylenglycol dimethyl ether</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>1,1-Dimethylhydrazine</td>
<td>Sh</td>
<td>Sh</td>
</tr>
<tr>
<td>1,2-Dimethylhydrazine</td>
<td>Sh</td>
<td>Sh</td>
</tr>
<tr>
<td>Methyl chloride</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Monomethylhydrazine</td>
<td>Sh</td>
<td>Sh</td>
</tr>
<tr>
<td>Peracetic acid</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>N-Phenyl-2-naphthylamine</td>
<td>Sh</td>
<td>Sh</td>
</tr>
<tr>
<td>N-Phenyl-1-naphthylamine</td>
<td>Sh</td>
<td>Sh</td>
</tr>
<tr>
<td>Toluene</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Toluene-2,4-diamine</td>
<td>Sh</td>
<td>Sh</td>
</tr>
<tr>
<td>Toluene diisocyanates</td>
<td>Sah</td>
<td>Sah</td>
</tr>
</tbody>
</table>

F. Carcinogenicity

1. Change

<table>
<thead>
<tr>
<th>Substance</th>
<th>Previous</th>
<th>New</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,2-Dichloropropane</td>
<td>3B</td>
<td>1</td>
</tr>
<tr>
<td>Methyl chloride</td>
<td>3B</td>
<td>–</td>
</tr>
<tr>
<td>Monomethylhydrazine</td>
<td>–</td>
<td>2</td>
</tr>
<tr>
<td>Peracetic acid</td>
<td>3B</td>
<td>4</td>
</tr>
<tr>
<td>N-Phenyl-2-naphthylamine</td>
<td>3B</td>
<td>1</td>
</tr>
<tr>
<td>Toluene diisocyanates</td>
<td>3A</td>
<td>–</td>
</tr>
</tbody>
</table>

F. Carcinogenicity

2. New Entry

<table>
<thead>
<tr>
<th>Substance</th>
<th>Previous</th>
<th>New</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-Butanethiol</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>2-Butyl-1,2-benzisothiazolin-3-one</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>2-Methyl-2-propanethiol</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Triphenyl monothiophosphate</td>
<td>4</td>
<td>–</td>
</tr>
</tbody>
</table>
### F. Carcinogenicity

#### 3. Review of classification: no change

<table>
<thead>
<tr>
<th>Substance</th>
<th>Previous</th>
<th>New</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antimony [7440-36-0] and its inorganic compounds except for stibine</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>see section XII</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chlorothalonil [1897-45-6]</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>see section Iib and Xc</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diethylene glycol dimethyl ether [111-96-6]</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>1,1-Dimethylhydrazine [57-14-7]</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>1,2-Dimethylhydrazine [540-73-8]</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>N-Phenyl-1-naphthylamine [90-30-2]</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>see section Xc</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Toluene (Toluol) [108-88-3]</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>see section XII</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Toluene-2,4-diamine [95-80-7]</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>The substance can occur simultaneously as vapour and aerosol.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>see section XII</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Triphenyl phosphate</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>see section Xc</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Xylene (all isomers) [1330-20-7]</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>At high levels of physical activity the observance of the BAT value should be checked regularly by biological monitoring.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>see section XII</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

### G. Germ cell mutagenicity

#### 1. change

<table>
<thead>
<tr>
<th>Substance</th>
<th>Previous</th>
<th>New</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antimony [7440-36-0] and its inorganic compounds except for stibine</td>
<td>3B</td>
<td>3A</td>
</tr>
<tr>
<td>see section XII</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1-Dimethylhydrazine [57-14-7]</td>
<td>–</td>
<td>3A</td>
</tr>
<tr>
<td>1,2-Dimethylhydrazine [540-73-8]</td>
<td>–</td>
<td>3A</td>
</tr>
<tr>
<td>Monomethylhydrazine [60-34-4]</td>
<td>–</td>
<td>3B</td>
</tr>
<tr>
<td>N-Phenyl-2-naphthylamine [135-88-6]</td>
<td>–</td>
<td>3A</td>
</tr>
<tr>
<td>see section XII</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Toluene-2,4-diamine [95-80-7]</td>
<td>–</td>
<td>3B</td>
</tr>
<tr>
<td>The substance can occur simultaneously as vapour and aerosol.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>see section XII</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

#### 2. new entry

<table>
<thead>
<tr>
<th>Substance</th>
<th>Previous</th>
<th>New</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-Butanethiol [513-53-1]</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>2-Butyl-1,2-benzisothiazolin-3-one [4299-07-4]</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>see section Iib and Xc</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-Methyl-2-propanethiol [75-66-1]</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Pigment Yellow 12, Pigment Yellow 13, Pigment Yellow 83</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>[6358-85-6; 5102-83-0; 5567-15-7]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Triphenyl monothiophosphate [597-82-0]</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>see section Xc</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
G. Germ cell mutagenicity

3. Review of classification: no change

<table>
<thead>
<tr>
<th>Substance</th>
<th>previous</th>
<th>new</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chlorothalonil [1897-45-6]</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>1,2-Dichloropropane [78-87-5]</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Diethylene glycol dimethyl ether [111-96-6]</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Methyl chloride [74-87-3]</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Peracetic acid [79-21-0]</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>N-Phenyl-1-naphthylamine [90-30-2]</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Toluene (Toluol) [108-88-3]</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Toluene diisocyanates</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>The substance can occur simultaneously as vapour and aerosol.</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Triphenyl phosphate [115-86-6]</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Xylene (all isomers) [1330-20-7]</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>At high levels of physical activity the observance of the BAT value should be checked regularly by biological monitoring.</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

H. Substances in section IIb

2. new entry

<table>
<thead>
<tr>
<th>Substance</th>
<th>previous</th>
<th>new</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-Butyl-1,2-benzisothiazolin-3-one [4299-07-4]</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

H. Substances in section IIb

3. Review of classification: no change

<table>
<thead>
<tr>
<th>Substance</th>
<th>previous</th>
<th>new</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chlorothalonil [1897-45-6]</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>
Part Assessment values in biological material

Biological Tolerance Values (BAT values)

* **Carbon monoxide** [630-08-0]
  
  no change

  5% in whole blood, parameter CO-Hb, BAT value derived as ceiling value because of acute toxic effects, evaluated for non-smokers

* **Cresol (all isomers)** [1319-77-3]: o-cresol [95-48-7], m-cresol [108-39-4], p-cresol [106-44-5]
  
  not established, urine, parameter cresol (sum of all isomers after hydrolysis)

  no previous BAT value

* **n-Heptane** [142-82-5]
  
  250 μg/l urine, parameter 2,5-heptanedione

  no previous BAT value

* **Neurotoxic esterase inhibitor**
  
  not established, whole blood, parameter reduction of the activity of neurotixic esterase in lymphocytes

  no previous BAT value

* **Toluene-2,4-diisocyanate** [584-84-9]
  
  5 μg/g creatinine in urine, parameter sum of 2,4- and 2,6-TDA (after hydrolysis)

  no previous BAT value

* **Toluene-2,6-diisocyanate** [91-08-7]
  
  5 μg/g creatinine in urine, parameter sum of 2,4- and 2,6-TDA (after hydrolysis)

  no previous BAT value

* **Toluene diisocyanate, mixture** [26471-62-5]
  
  5 μg/g creatinine in urine, parameter sum of 2,4- and 2,6-TDA (after hydrolysis)

  no previous BAT value

* **Tricresylphosphate, sum of all o-isomers** [78-30-8]
  
  not established, urine, parameter di-o-cresylphosphate

  no previous BAT value

Exposure Equivalents for Carcinogenic Substances (EKA)

* **Nickel (easily soluble nickel compounds, e.g. nickel acetate and similar soluble salts, nickel chloride, nickel sulfate)**
  
  not established

  previous: EKA

Biological Guidance Values (BLW)

* **Cresol (all isomers)** [1319-77-3]: o-cresol [95-48-7], m-cresol [108-39-4], p-cresol [106-44-5]
  
  not established, urine, parameter cresol (sum of all isomers after hydrolysis)

  previous BLW: 200 mg/l
Biological Reference Values (BAR)

* 1,2-Dichloropropane [78-87-5]
  not established, urine, parameter 2-hydroxypropylmercapturic acid
  no previous BAR for this parameter

* Gadolinium [7440-54-2]
  not established, urine, parameter gadolinium
  no previous BAR for this parameter

* Glycidol [556-52-5]
  15 pmol/g globin erythrocyte fraction of whole blood, parameter N-(2,3-dihydroxypropyl)valine
  no previous BAR for this parameter
  evaluated for non smokers

* 2-Naphthylamine [78-87-5]
  not established, urine, parameter 2-naphthylamine
  no previous BAR for this parameter

* Selenium [7782-49-2] and its inorganic compounds
  100 μg/l plasma/serum, parameter selenium
  no previous BAR for this parameter
  30 μg/g creatinine in urine, parameter selenium
  no previous BAR for this parameter

* Tricresylphosphate, sum of all o-isomers [78-30-8]
  not established, urine, parameter di-o-cresylphosphate
  no previous BAR for this parameter

Pregnancy Risk Group at BAT value

* Carbon monoxide [630-08-0]
  Group B
  previous assignment at MAK value: Group B

* Toluene [108-88-3]
  Group C
  previous assignment at MAK value: Group C

* Toluene-2,4-diisocyanate [584-84-9]
  Group C
  previous assignment at MAK value: Group C

* Toluene-2,6-diisocyanate [91-08-7]
  Group C
  previous assignment at MAK value: Group C

* Toluene diisocyanate, mixture [26471-62-5]
  Group C
  previous assignment at MAK value: Group C
Substances being examined for the establishment of MAK Values and Assessment Values in Biological Material

The “Permanent Commission for the Investigation of Health Hazards of Chemical Compounds in the Work Area” of the Deutsche Forschungsgemeinschaft is discussing changes of, or additions to, the MAK values and BAT values and other classifications of the following substances for the 2021 List (Report 57) and future subsequent lists:

### Announcement list

<table>
<thead>
<tr>
<th>Substance</th>
<th>Point of discussion</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetone [67-64-1]</td>
<td>Reevaluation of BAT value</td>
<td>Suggestion from the Commission</td>
</tr>
<tr>
<td>Acrylamide [79-06-1]</td>
<td>Prenatal toxicity</td>
<td>Suggestion from the Commission</td>
</tr>
<tr>
<td>Acrylates (monomers and oligomers)</td>
<td>Reevaluation of EKA correlation</td>
<td>Suggestion from the Commission</td>
</tr>
<tr>
<td>Aluminium chlorohydrate [1327-41-9; 11097-68-0; 84861-98-3]</td>
<td>Percutaneous absorption, new entry</td>
<td>Suggestion from the Commission</td>
</tr>
<tr>
<td>Aluminium [7429-90-5] and its inorganic compounds</td>
<td>MAK value, new entry</td>
<td>Suggestion from the Commission</td>
</tr>
<tr>
<td>Arsenic [7440-38-2] and inorganic arsenic compounds</td>
<td>Reproductive toxicity, new entry</td>
<td>Suggestion from the Commission</td>
</tr>
<tr>
<td>Benzophenone [119-61-9]</td>
<td>MAK value, new entry</td>
<td>Suggestion from the Commission</td>
</tr>
<tr>
<td>Benzophenone-3 [131-57-7]</td>
<td>Sensitizing effect</td>
<td>Suggestion from the Commission</td>
</tr>
<tr>
<td>Benzophenone-4 [4065-45-6]</td>
<td>Sensitizing effect</td>
<td>Suggestion from the Commission</td>
</tr>
<tr>
<td>Bis[O,O-bis(2-ethylhexyl) dithiophosphorato-S,S’]dioxodimolybdenum [68958-92-9; 72030-25-2]</td>
<td>MAK value, new entry</td>
<td>Suggestion from the Commission</td>
</tr>
<tr>
<td>Bisphenol A (4,4’-Iso-propylenediphenol) [80-05-7]</td>
<td>MAK value</td>
<td>Suggestion from the Commission</td>
</tr>
<tr>
<td>n-Butyl alcohol [71-36-3]</td>
<td>Reevaluation of BLW</td>
<td>Suggestion from the Commission</td>
</tr>
<tr>
<td>4-tert-Butylbenzoic acid [98-73-7]</td>
<td>MAK value</td>
<td>Suggestion from the Commission</td>
</tr>
<tr>
<td>tert-Butyl hydroperoxide [75-91-2]</td>
<td>MAK value</td>
<td>Suggestion from the Commission</td>
</tr>
<tr>
<td>p-tert-Butylphenol [98-54-4]</td>
<td>MAK value</td>
<td>Suggestion from the Commission</td>
</tr>
<tr>
<td>Cadmium [7440-43-9] and its inorganic compounds (inhalable fraction)</td>
<td>Carcinogenic effect</td>
<td>Suggestion from the Commission</td>
</tr>
<tr>
<td>Calcium sulfate (inhalable fraction)</td>
<td>MAK value</td>
<td>Suggestion from the Commission</td>
</tr>
<tr>
<td>Anhydrite [7778-18-9]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hemihydrate [10034-76-1]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dihydrate [10101-41-4]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gypsum [13397-24-5]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Substance</td>
<td>Point of discussion</td>
<td>Reason</td>
</tr>
<tr>
<td>--------------------------------------------------------------------------</td>
<td>--------------------------------------------------------------------------------------</td>
<td>----------------------------------------------------------</td>
</tr>
<tr>
<td>Calcium sulfate (respirable fraction)</td>
<td>MAK value</td>
<td>Suggestion from the Commission</td>
</tr>
<tr>
<td>Anhydrite [7778-18-9]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hemihydrate [10034-76-1]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dihydrate [10101-41-4]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gypsum [13397-24-5]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ε-Caprolactam [105-60-2] (vapour and dust)</td>
<td>MAK value</td>
<td>Suggestion from the Commission</td>
</tr>
<tr>
<td>Carbon dioxide [124-38-9]</td>
<td>Reproductive toxicity</td>
<td>Suggestion from the Commission</td>
</tr>
<tr>
<td>Cerium dioxide [1306-38-3]</td>
<td>MAK value, new entry</td>
<td>Suggestion from the Commission</td>
</tr>
<tr>
<td>Chloroform [67-66-3]</td>
<td>MAK value</td>
<td>Suggestion from the Commission</td>
</tr>
<tr>
<td>Chromium(III) compounds</td>
<td>MAK value</td>
<td>Suggestion from the Commission</td>
</tr>
<tr>
<td>Copper [7440-50-8] and its inorganic compounds</td>
<td>MAK value</td>
<td>Suggestion from the Commission</td>
</tr>
<tr>
<td>Demeton-methyl [8022-00-2]</td>
<td>MAK value</td>
<td>Suggestion from the Commission</td>
</tr>
<tr>
<td>Diethyl phthalate [131-17-9]</td>
<td>Carcinogenic effect</td>
<td>Suggestion from the Commission</td>
</tr>
<tr>
<td>2,6-Di-tert-butyl-p-cresol (3,5-Di-tert-butyl-4-hydroxytoluene) (BHT) [128-37-0]</td>
<td>Evaluation of assessment values in biological material</td>
<td>Suggestion from the Commission</td>
</tr>
<tr>
<td>Dichloromethane [75-09-2]</td>
<td>MAK value</td>
<td>Suggestion from the Commission</td>
</tr>
<tr>
<td>1,2-Dichloropropane [78-87-5]</td>
<td>Evaluation of assessment values in biological material</td>
<td>Suggestion from the Commission</td>
</tr>
<tr>
<td>2,2-Dichloropropionic acid [75-99-0]</td>
<td>MAK value</td>
<td>Suggestion from the Commission</td>
</tr>
<tr>
<td>Diethylene glycol dimethyl ether [111-96-6]</td>
<td>Evaluation of assessment values in biological material</td>
<td>Suggestion from the Commission</td>
</tr>
<tr>
<td>Diethylene glycol monomethyl ether [111-77-3]</td>
<td>Evaluation of assessment values in biological material</td>
<td>Suggestion from the Commission</td>
</tr>
<tr>
<td>Diisononyl phthalate [28553-12-0]</td>
<td>MAK value, new entry</td>
<td>Suggestion from the Commission</td>
</tr>
<tr>
<td>N,N-Dimethyl-p-toluidine [99-97-8]</td>
<td>Sensitizing effect</td>
<td>Suggestion from the Commission</td>
</tr>
<tr>
<td>Dinitrotoluene (mixtures of isomers) [25321-14-6]</td>
<td>Carcinogenic effect</td>
<td>Suggestion from the Commission</td>
</tr>
<tr>
<td>Dipropylene glycol monomethyl ether [34590-94-8] (mixture of isomers)</td>
<td>MAK value</td>
<td>Suggestion from the Commission</td>
</tr>
<tr>
<td>Dust, general threshold limit value (inhalable fraction)</td>
<td>MAK value</td>
<td>Suggestion from the Commission</td>
</tr>
<tr>
<td>Ethylene [74-85-1]</td>
<td>Prenatal toxicity</td>
<td>Suggestion from the Commission</td>
</tr>
<tr>
<td>Ethylene oxide [75-21-8]</td>
<td>Reevaluation of EKA correlation</td>
<td>Suggestion from the Commission</td>
</tr>
<tr>
<td>N-Ethyl-2-pyrrolidone [2687-91-4] (vapour)</td>
<td>Evaluation of a BLW</td>
<td>Suggestion from the Commission</td>
</tr>
<tr>
<td>Fatty alcohol ethoxylates, C16–18 and C18-unsaturated [68920-66-1]</td>
<td>MAK value, new entry</td>
<td>Suggestion from the Commission</td>
</tr>
<tr>
<td>Glass wool fibres</td>
<td>Carcinogenic effect</td>
<td>Suggestion from the Commission</td>
</tr>
<tr>
<td>Graphene</td>
<td>Carcinogenic effect, new entry</td>
<td>Suggestion from the Commission</td>
</tr>
<tr>
<td></td>
<td>MAK value</td>
<td>Suggestion from the Commission</td>
</tr>
<tr>
<td>Substance</td>
<td>Point of discussion</td>
<td>Reason</td>
</tr>
<tr>
<td>-----------</td>
<td>---------------------</td>
<td>--------</td>
</tr>
<tr>
<td>n-Hexane [110-54-3]</td>
<td>Reevaluation of BAT value</td>
<td>Suggestion from the Commission</td>
</tr>
<tr>
<td>Hydrazine [302-01-2]</td>
<td>Reevaluation of EKA correlation</td>
<td>Suggestion from the Commission</td>
</tr>
<tr>
<td>Indium [7440-74-6]</td>
<td>MAK value, new entry</td>
<td>Suggestion from the Commission</td>
</tr>
<tr>
<td>Isoflurane [26675-46-7]</td>
<td>MAK value</td>
<td>Suggestion from the UAIII</td>
</tr>
<tr>
<td>Isophorone diisocyanate [4098-71-9]</td>
<td>MAK value</td>
<td>Suggestion from the Commission</td>
</tr>
<tr>
<td>Lead [7439-92-1] and its inorganic compounds (inhalable fraction)</td>
<td>Carcinogenic effect</td>
<td>Suggestion from the Commission</td>
</tr>
<tr>
<td>Manganese [7439-96-5] and its inorganic compounds (inhalable fraction)</td>
<td>MAK value</td>
<td>Suggestion from AGS</td>
</tr>
<tr>
<td>2-Mercaptobenzothiazole [149-30-4]</td>
<td>MAK value</td>
<td>Suggestion from the Commission</td>
</tr>
<tr>
<td>Mercury, organic compounds</td>
<td>Carcinogenic effect</td>
<td>Suggestion from the Commission</td>
</tr>
<tr>
<td>Metal-working fluids</td>
<td>Sensitizing effect</td>
<td>Suggestion from the Commission</td>
</tr>
<tr>
<td>Methoxyacetic acid [625-45-6]</td>
<td>Reevaluation of assessment values in biological material</td>
<td>Suggestion from the Commission</td>
</tr>
<tr>
<td>2-Methoxyethanol [109-86-4]</td>
<td>Reevaluation of assessment values in biological material</td>
<td>Suggestion from the Commission</td>
</tr>
<tr>
<td>2-Methoxyethyl acetate [110-49-6]</td>
<td>Reevaluation of assessment values in biological material</td>
<td>Suggestion from the Commission</td>
</tr>
<tr>
<td>4,4’-Methylenediphenyl diisocyanate (MDI) [101-68-8] (inhalable fraction) see also “polymeric MDI”</td>
<td>Reevaluation of assessment values in biological material</td>
<td>Suggestion from the Commission</td>
</tr>
<tr>
<td>Methyl iodide [74-88-4]</td>
<td>Carcinogenic effect</td>
<td>Suggestion from the Commission</td>
</tr>
<tr>
<td>N-Methyl-2-pyrrolidone [872-50-4] (vapour)</td>
<td>Reevaluation of BAT value</td>
<td>Suggestion from the Commission</td>
</tr>
<tr>
<td>Molybdenum disulfide [1317-33-5]</td>
<td>MAK value, new entry</td>
<td>Suggestion from the Commission</td>
</tr>
<tr>
<td>Naphtha (petroleum) hydrotreated, heavy [64742-48-9]</td>
<td>MAK value</td>
<td>Suggestion from the Commission</td>
</tr>
<tr>
<td>Naphthalene [91-20-3]</td>
<td>MAK value</td>
<td>Suggestion from the Commission</td>
</tr>
<tr>
<td>1,5-Naphthylene diisocyanate [3173-72-6]</td>
<td>MAK value</td>
<td>Suggestion from the Commission</td>
</tr>
<tr>
<td>Nickel carbonyl [13463-39-3]</td>
<td>MAK value, new entry</td>
<td>Suggestion from the Commission</td>
</tr>
<tr>
<td>Nicotine [54-11-5]</td>
<td>MAK value</td>
<td>Suggestion from the Commission</td>
</tr>
<tr>
<td>Pentachlorophenol [87-86-5]</td>
<td>Carcinogenic effect</td>
<td>Suggestion from the Commission</td>
</tr>
<tr>
<td>Perfluorosubutene [382-21-8]</td>
<td>MAK value, new entry</td>
<td>Suggestion from the Commission</td>
</tr>
<tr>
<td>Perfluorooctanesulfonic acid (PFOS) [1763-23-1] and its salts</td>
<td>Reevaluation of BAT value</td>
<td>Suggestion from the Commission</td>
</tr>
<tr>
<td>Perfluoroctanoic acid (PFOA) [335-67-1] and its inorganic salts</td>
<td>Reevaluation of BAT value</td>
<td>Suggestion from the Commission</td>
</tr>
<tr>
<td>Substance</td>
<td>Point of discussion</td>
<td>Reason</td>
</tr>
<tr>
<td>--------------------------------------------------------------------------</td>
<td>----------------------------------------------------------</td>
<td>------------------------------------------------------</td>
</tr>
<tr>
<td>Phenol [108-95-2]</td>
<td>MAK value</td>
<td>Suggestion from the Commission</td>
</tr>
<tr>
<td>Polycyclic aromatic hydrocarbons (PAH)</td>
<td>Reevaluation of assessment values in biological material</td>
<td>Suggestion from the Commission</td>
</tr>
<tr>
<td>2-Propoxylethyl acetate [20706-25-6]</td>
<td>MAK value</td>
<td>Suggestion from the Commission</td>
</tr>
<tr>
<td>Quartz [14808-60-7]</td>
<td>MAK value</td>
<td>Suggestion from the Commission</td>
</tr>
<tr>
<td>Rubber components</td>
<td>MAK value</td>
<td>Suggestion from the Commission</td>
</tr>
<tr>
<td>Selenium [7782-49-2] and its inorganic compounds (as Se)</td>
<td>MAK value</td>
<td>Suggestion from the UAIII</td>
</tr>
<tr>
<td>Silica, amorphous b) quartz glass [60676-86-0], fused silica [60676-86-0], silica fume (calcined) [69012-64-2], diatomaceous earth [68855-54-9]</td>
<td>MAK value</td>
<td>Suggestion from the Commission</td>
</tr>
<tr>
<td>Soya bean constituents</td>
<td>MAK value</td>
<td>Suggestion from the Commission</td>
</tr>
<tr>
<td>Tetrabromobisphenol A [79-94-7]</td>
<td>MAK value</td>
<td>Suggestion from the Commission</td>
</tr>
<tr>
<td>2,3,7,8-Tetrachlorodibenzo-p-dioxin [1746-01-6]</td>
<td>MAK value</td>
<td>Suggestion from the Commission</td>
</tr>
<tr>
<td>2,2'-Thiobis(4-methyl-6-tert-butylphenol) [90-66-4]</td>
<td>MAK value, new entry</td>
<td>Suggestion from the Commission</td>
</tr>
<tr>
<td>Toluene (Toluol) [108-88-3]</td>
<td>Carcinogenic effect</td>
<td>Suggestion from the Commission</td>
</tr>
<tr>
<td>Evaluation of assessment values in biological material</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tributyl phosphate [126-73-8]</td>
<td>Percutaneous absorption</td>
<td>Suggestion from the Commission</td>
</tr>
<tr>
<td>1,2,3-Trichlorobenzene [87-61-6]</td>
<td>MAK value</td>
<td>Suggestion from the Commission</td>
</tr>
<tr>
<td>1,2,4-Trichlorobenzene [120-82-1]</td>
<td>Carcinogenic effect</td>
<td>Suggestion from the Commission</td>
</tr>
<tr>
<td>1,3,5-Trichlorobenzene [108-70-3]</td>
<td>MAK value</td>
<td>Suggestion from the Commission</td>
</tr>
<tr>
<td>Triglycerides and long-chain fatty acid esters</td>
<td>MAK value, new entry</td>
<td>Suggestion from the Commission</td>
</tr>
<tr>
<td>Trimethylbenzene (all isomers)</td>
<td>MAK value</td>
<td>Suggestion from the Commission</td>
</tr>
<tr>
<td>Triphenyl phosphine [603-35-0]</td>
<td>MAK value</td>
<td>Suggestion from the Commission</td>
</tr>
<tr>
<td>N,N’,N”-Tris(β-hydroxypropyl)hexahydro-1,3,5-triazine [25254-50-6]</td>
<td>MAK value, new entry</td>
<td>Suggestion from users</td>
</tr>
<tr>
<td>Vanadium [7440-62-2] and its inorganic compounds (inhalable fraction)</td>
<td>MAK value</td>
<td>Suggestion from the Commission</td>
</tr>
<tr>
<td>Carcinogenic effect</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reevaluation of assessment values in biological material</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vinyl chloride [75-01-4]</td>
<td>Reevaluation of assessment values in biological material</td>
<td>Suggestion from the Commission</td>
</tr>
<tr>
<td>Woods</td>
<td>Sensitizing effect</td>
<td>Suggestion from the Commission</td>
</tr>
<tr>
<td>Xylene (all isomers) [1330-20-7]</td>
<td>Reevaluation of BAT value</td>
<td>Suggestion from the Commission</td>
</tr>
<tr>
<td>Zinc [7440-66-6] and its inorganic compounds (inhalable fraction)</td>
<td>MAK value</td>
<td>Suggestion from AGS</td>
</tr>
</tbody>
</table>
This announcement list is also published in German language on the homepage of the Commission at the DFG; https://www.dfg.de/download/pdf/dfg_im_profil/gremien/senat/arbeitsstoffe/ankuendigungsliste_20_21.pdf). If necessary, in addition to the regular updates each year in July, further announcements of prospective changes and new entries can be made there at any time.

The Commission requests that company physicians, the manufacturers and users of industrial chemicals, research institutes dealing with these compounds, as well as boards of control and other governmental institutions, submit the names of any additional substances which occur at the workplace and have not as yet been considered.

Scientific and technical data and information applying to the compounds listed above should be submitted by

1st February 2021

to the

Geschäftsstelle der Deutschen Forschungsgemeinschaft
53170 Bonn

Prof. Dr. A. Hartwig
Chair of the Commission for the Investigation of Health Hazards of Chemical Compounds in the Work Area