## **Supplementary material**

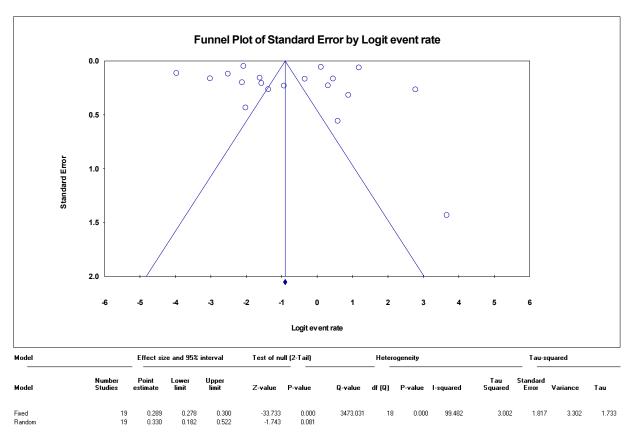
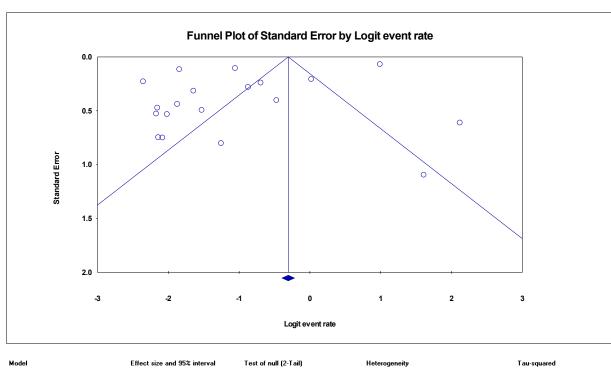
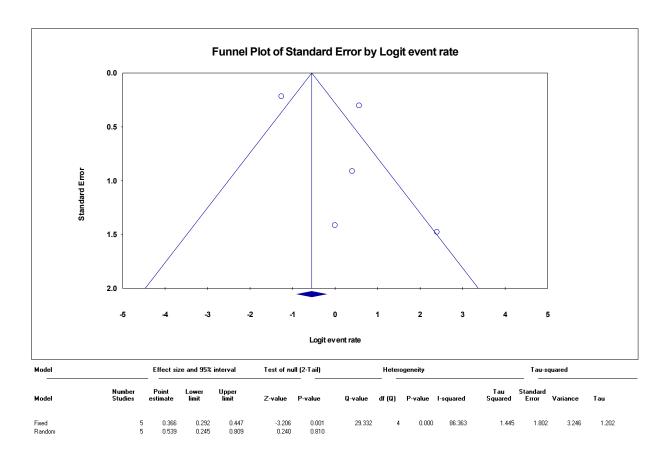





Figure S1: Funnel plot of standard error (y-axis) against rate of co-infection in hospitalized COVID-19 patients



| Model           | Effect size and 95% interval |                   |                | l est of null (2-1 all) |                  |                | Heterogeneity |        |         |           | I au-squared   |                   |          |       |  |
|-----------------|------------------------------|-------------------|----------------|-------------------------|------------------|----------------|---------------|--------|---------|-----------|----------------|-------------------|----------|-------|--|
| Model           | Number<br>Studies            | Point<br>estimate | Lower<br>limit | Upper<br>limit          | Z-value          | P-value        | Q-value       | df (Q) | P-value | I-squared | Tau<br>Squared | Standard<br>Error | Variance | Tau   |  |
| Fixed<br>Bandom | 19<br>19                     | 0.424<br>0.260    | 0.403<br>0.151 | 0.446<br>0.409          | -6.822<br>-3.022 | 0.000<br>0.003 | 783.405       | 18     | 0.000   | 97.702    | 2.043          | 1.391             | 1.936    | 1.429 |  |

**Figure S2:** Funnel plot of standard error (y-axis) against rate of *S. aureus* co-infection in hospitalized COVID-19 patients.



**Figure S3:** Funnel plot of standard error (y-axis) against rate of MRSA in hospitalized COVID-19 patients with *S. aureus* co-infection.

| Coinfection                                                                                                                     |                                                                                           | S. aureus                                                                                                                       |                                                                                         | MRSA  Begg and Mazumdar rank correlation                                                                                        |                                                                                     |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|--|--|--|
| Begg and Mazumdar rank correlation                                                                                              |                                                                                           | Begg and Mazumdar rank correlation                                                                                              |                                                                                         |                                                                                                                                 |                                                                                     |  |  |  |
| Kendall's S statistic (P-Q)                                                                                                     | 39.00000                                                                                  | Kendall's S statistic (P-Q)                                                                                                     | 41.00000                                                                                | Kendall's S statistic (P-Q)                                                                                                     | 2.00000                                                                             |  |  |  |
| Kendall's tau without continuity correction                                                                                     |                                                                                           | Kendall's tau without continuity correction                                                                                     |                                                                                         | Kendall's tau without continuity correction                                                                                     |                                                                                     |  |  |  |
| Tau<br>z-value for tau<br>P-value (1+ailed)<br>P-value (2+ailed)                                                                | 0.22807<br>1.36444<br>0.08621<br>0.17243                                                  | Tau<br>z-value for tau<br>P-value (1-tailed)<br>P-value (2-tailed)                                                              | 0.23977<br>1.43441<br>0.07573<br>0.15146                                                | Tau<br>zwalue (or tau<br>P-value (1-tailed)<br>P-value (2-tailed)                                                               | 0.20000<br>0.48990<br>0.31210<br>0.62421                                            |  |  |  |
| Kendall's tau with continuity correction                                                                                        |                                                                                           | Kendall's tau with continuity correction                                                                                        |                                                                                         | Kendall's tau with continuity correction                                                                                        |                                                                                     |  |  |  |
| Tau<br>z-value for tau<br>P-value (1-tailed)<br>P-value (2-tailed)                                                              | 0.2222<br>1.32945<br>0.09185<br>0.18370                                                   | Tau<br>z-value for tau<br>P-value (1-tailed)<br>P-value (2-tailed)                                                              | 0.23392<br>1.39942<br>0.08084<br>0.16169                                                | Tau<br>z-value for tau<br>P-value (1-tailed)<br>P-value (2-tailed)                                                              | 0.10000<br>0.24495<br>0.40325<br>0.80650                                            |  |  |  |
| Egger's regression intercept                                                                                                    |                                                                                           | Egger's regression intercept                                                                                                    |                                                                                         | Egger's regression intercept                                                                                                    |                                                                                     |  |  |  |
| Intercept Standard error 95% lower limit (2-tailed) 95% upper limit (2-tailed) t-value df P-value (1-tailed) P-value (2-tailed) | -0.33605<br>5.36750<br>-11.66048<br>10.98838<br>0.06251<br>17.00000<br>0.47540<br>0.95081 | Intercept Standard error 95% lower limit (2-tailed) 95% upper limit (2-tailed) t-value df P-value (1-tailed) P-value (2-tailed) | -3.98117<br>2.10865<br>-8.43002<br>0.46769<br>1.88802<br>17.00000<br>0.03811<br>0.07621 | Intercept Standard error 95% lower limit (2-tailed) 95% upper limit (2-tailed) t-value df P-value (1-tailed) P-value (2-tailed) | 2.09094<br>1.95861<br>4.14225<br>8.32413<br>1.0675<br>3.00000<br>0.18200<br>0.36400 |  |  |  |

## Main results for Model 1, Random effects (ML), Z-Distribution, Logit event rate

|         | Intercept            | -11.0668 | 2.9724 | -16.8926 | -5.2411 | -3.72 | 0.0002 |                          |  |  |  |
|---------|----------------------|----------|--------|----------|---------|-------|--------|--------------------------|--|--|--|
|         | Setting: Monocenter  | -1.9840  | 1.2878 | -4.5081  | 0.5401  | -1.54 | 0.1234 |                          |  |  |  |
| Country | Study type           | 1.6374   | 0.7466 | 0.1741   | 3.1007  | 2.19  | 0.0283 |                          |  |  |  |
|         | Country: Egypt       | -0.2119  | 1.5150 | -3.1814  | 2.7575  | -0.14 | 0.8888 |                          |  |  |  |
|         | Country: France      | 4.4655   | 1.1836 | 2.1456   | 6.7854  | 3.77  | 0.0002 |                          |  |  |  |
|         | Country: Iran        | -0.8259  | 1.6158 | -3.9928  | 2.3409  | -0.51 | 0.6092 |                          |  |  |  |
|         | Country: Italy       | 4.1385   | 1.0495 | 2.0815   | 6.1955  | 3.94  | 0.0001 |                          |  |  |  |
|         | Country: Netherlands | 3.5550   | 1.2662 | 1.0733   | 6.0367  | 2.81  | 0.0050 | Q=40.39, df=10, p=0.0000 |  |  |  |
| Country | Country: Russia      | -4.1634  | 1.6231 | -7.3447  | -0.9822 | -2.57 | 0.0103 | Q=40.55, u1=10, p=0.0000 |  |  |  |
|         | Country: S. Arabia   | 1.2832   | 0.8570 | -0.3965  | 2.9629  | 1.50  | 0.1343 |                          |  |  |  |
|         | Country: Spain       | 0.3033   | 0.7090 | -1.0864  | 1.6930  | 0.43  | 0.6688 |                          |  |  |  |
|         | Country: UK          | 0.0614   | 0.9997 | -1.8981  | 2.0208  | 0.06  | 0.9511 |                          |  |  |  |
|         | Country: USA         | -1.0846  | 1.4612 | -3.9485  | 1.7793  | -0.74 | 0.4579 |                          |  |  |  |
|         | Sudy quality         | 1.3526   | 0.3099 | 0.7452   | 1.9599  | 4.36  | 0.0000 |                          |  |  |  |

Statistics for Model 1

Test of the model: Simultaneous test that all coefficients (excluding intercept) are zero

Q = 53.79, df = 13, p = 0.0000

Goodness of fit: Test that unexplained variance is zero

 $Tau^2 = 0.2048$ , Tau = 0.4525,  $I^2 = 93.21\%$ , Q = 73.63, df = 5, p = 0.0000

Comparison of Model 1 with the null model

Total between-study variance (intercept only)

 $\mathsf{Tau^2} = 1.2371,\,\mathsf{Tau} = 1.1123,\,\mathsf{I^2} = 97.70\%,\,\mathsf{Q} = 783.41,\,\mathsf{df} = 18,\,\mathsf{p} = 0.0000$ 

Proportion of total between-study variance explained by Model 1

 $R^2$  analog = 0.83

Number of studies in the analysis 19

Figure S4: Main random effects meta-regression (maximum likelihood) results for four covariates pooled together

| Study                           | Observed | Predicted | Residual | Leverage | Student  | Jacknifed | Cook's   | DF Fits | Variance | Tau^2  | Sum    | Weight | Pct Wt | Pct Wt |
|---------------------------------|----------|-----------|----------|----------|----------|-----------|----------|---------|----------|--------|--------|--------|--------|--------|
|                                 |          |           |          |          | Residual | Residual  | Distance |         |          |        |        |        |        |        |
|                                 |          |           |          |          |          |           |          |         |          |        |        |        |        |        |
|                                 |          |           |          |          |          |           |          |         |          |        |        |        |        |        |
| Hughes et al   Monocenter       | -2.1691  | -2.1691   | 0.0000   | 1.0000   | 0.0000   | 0.0000    | 0.0000   | 0.0000  | 0.2786   | 0.2048 | 0.4833 | 2.0689 | 0.0393 |        |
| Zhu, et al   Monocenter         | -2.3536  | -1.9456   | -0.4081  | 0.7727   | -1.6885  | -2.3038   | 0.6922   | -4.2473 | 0.0521   | 0.2048 | 0.2569 | 3.8924 | 0.0739 |        |
| Crotty et al   Multicenter      | -2.1518  | -2.3988   | 0.2470   | 0.5910   | 0.5903   | 0.5474    | 0.0360   | 0.6581  | 0.2233   | 0.2048 | 0.4280 | 2.3363 | 0.0443 | l      |
| Wolfe et al   Multicenter       | 0.9906   | 0.3064    | 0.6842   | 0.4711   | 2.0558   | 4.6741    | 0.2689   | 4.4112  | 0.0047   | 0.2048 | 0.2094 | 4.7744 | 0.0906 |        |
| Sharov et al _A   Multicenter   | -0.8708  | -1.4199   | 0.5491   | 0.4347   | 1.3714   | 1.5530    | 0.1033   | 1.3619  | 0.0788   | 0.2048 | 0.2836 | 3.5263 | 0.0669 | l      |
| Sharov et al _B   Multicenter   | -1.8422  | -1.4199   | -0.4223  | 0.5653   | -1.3714  | -1.5530   | 0.1747   | -1.7710 | 0.0133   | 0.2048 | 0.2181 | 4.5854 | 0.0870 | ı      |
| Sharifipour et al   Multicenter | -2.1401  | -2.1401   | 0.0000   | 1.0000   | 0.0000   | 0.0000    | 0.0000   | 0.0000  | 0.5588   | 0.2048 | 0.7636 | 1.3096 | 0.0248 |        |
| Maes et al   Multicenter        | -1.2528  | -1.2528   | -0.0000  | 1.0000   | 0.0000   | 0.0000    | 0.0000   | 0.0000  | 0.6429   | 0.2048 | 0.8476 | 1.1798 | 0.0224 |        |
| Ramadan et al   Multicenter     | -1.5261  | -1.5261   | 0.0000   | 1.0000   | 0.0000   | 0.0000    | 0.0000   | 0.0000  | 0.2435   | 0.2048 | 0.4482 | 2.2309 | 0.0423 | l      |
| Nieuwenhuis et al   Monocenter  | 1.6094   | 1.6094    | -0.0000  | 1.0000   | 0.0000   | 0.0000    | 0.0000   | 0.0000  | 1.2000   | 0.2048 | 1.4048 | 0.7119 | 0.0135 |        |
| Nori et al   Multicenter        | 0.0215   | 0.0215    | -0.0000  | 1.0000   | 0.0000   | 0.0000    | 0.0000   | 0.0000  | 0.0430   | 0.2048 | 0.2478 | 4.0358 | 0.0766 | ı      |
| Song et al   Monocenter         | -2.0794  | -3.2981   | 1.2187   | 0.3211   | 1.6885   | 2.3038    | 0.0963   | 1.5844  | 0.5625   | 0.2048 | 0.7673 | 1.3033 | 0.0247 |        |
| Punjabi et al   Multicenter     | -1.0539  | -1.0462   | -0.0077  | 0.3697   | -0.0209  | -0.0187   | 0.0000   | -0.0143 | 0.0111   | 0.2048 | 0.2158 | 4.6334 | 0.0879 | ı      |
| Garcia et al   Monocenter       | -1.6422  | -1.6422   | -0.0000  | 1.0000   | 0.0000   | 0.0000    | 0.0000   | 0.0000  | 0.0995   | 0.2048 | 0.3042 | 3.2870 | 0.0624 | l      |
| Alosaimi et al   Monocenter     | -2.0149  | -2.0149   | -0.0000  | 1.0000   | 0.0000   | 0.0000    | 0.0000   | 0.0000  | 0.2833   | 0.2048 | 0.4881 | 2.0487 | 0.0389 | l      |
| Giacobbe et al   Monocenter     | -1.8718  | -0.7970   | -1.0748  | 0.6329   | -2.8151  | -1.#INF   | 0.9760   | -1.#INF | 0.1923   | 0.2048 | 0.3971 | 2.5184 | 0.0478 | I      |
| Contou et al   Monocenter       | -0.4700  | -0.4700   | 0.0000   | 1.0000   | 0.0000   | 0.0000    | 0.0000   | 0.0000  | 0.1625   | 0.2048 | 0.3673 | 2.7228 | 0.0517 | I      |
| Aleman et al   Multicenter      | -0.6931  | 0.3064    | -0.9995  | 0.3759   | -2.4696  | -1.#INF   | 0.2624   | -1.#INF | 0.0577   | 0.2048 | 0.2625 | 3.8101 | 0.0723 | I      |
| Calcagno et al   Monocenter     | 2.1203   | 0.5555    | 1.5647   | 0.4656   | 2.8151   | 1.#INF    | 0.4931   | 1.#INF  | 0.3733   | 0.2048 | 0.5781 | 1.7298 | 0.0328 | l      |

Figure S4: Diagnosis of random effects model